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Introduction

The Aedes aegypti mosquito (Linnaeus, 1762) (Diptera: Culicidae) 
has great epidemiological importance, contributing to the rise of various 
emerging and re-emerging infectious diseases globally (Dunford et al., 
2016). Native to Africa, this species has established itself in tropical and 
subtropical regions worldwide due to its highly invasive behavior and 
close relationship with humans (Walker et al., 2018).

Over the years, the World Health Organization (WHO) has consistently 
highlighted the global increase in mosquito-borne infections. Notable 
diseases include dengue, Zika, chikungunya, and malaria, which are directly 
linked to the emergence and resurgence of invasive mosquito species. 
These species have become increasingly adapted to urban environments 
and are highly effective at spreading pathogens (Tabachnick, 2016). 
Despite significant efforts by vector control programs, these arthropods 
continue to pose a major threat to public health (Achee et al., 2019).

In Brazil, the arboviruses with the greatest impact on the public 
health system are the dengue, chikungunya, and Zika viruses. The co-
endemicity of multiple arboviruses complicates clinical-epidemiological 
diagnosis and clinical management, as these diseases are directly 
influenced by the urbanization process and the territorial expansion 
of the vector (Wilke et al., 2017; Arduino et al., 2020; Magalhães et al., 
2020). These arboviruses cause high rates of morbidity and mortality, 
significantly burdening the health system’s economy by billions of 
dollars every year (Yang et al., 2020). Although the global distribution 
of dengue transmission is uncertain, it is estimated that at least 30% 
(up to 54%) of the world’s population lives in areas at risk of dengue 
infection (WHO, 2009; Brady et al., 2012).

In an attempt to reduce the incidence of these diseases, vector 
control is essential. Effective strategies include chemical and mechanical 
control methods, which, when combined with social mobilization 
initiatives and environmental protection laws, help reduce Ae. aegypti 
infestations. The ideal strategy is to eliminate the vector in its immature 
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A B S T R A C T
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stages (egg, larva, and pupa) and, consequently, its breeding sites. This 
approach is more effective because once Ae. aegypti reaches the adult 
stage, it can disperse across various environments (Campos  et  al., 
2020), making control efforts impractical and potentially causing 
environmental damage.

The use of synthetic chemical compounds to reduce the population 
of mosquito vectors remains the most effective method for reducing the 
number of disease cases in more populous and poorer areas. However, 
the indiscriminate application of these synthetic insecticides (such as 
organochlorines, organophosphates, carbamates, and pyrethroids) can 
cause adverse effects on the health of humans and ecosystems, leading 
to their bioaccumulation in food, water, soil, and other environmental 
components. Another crucial element of the interaction between 
synthetic chemical insecticides and mosquito vectors is the emergence 
and resurgence of resistant populations caused by the intense and regular 
use of a single insecticide (Mossa et al., 2018; Badr, 2020). Previous 
studies have shown that resistance to insecticides like temephos and 
deltamethrin in larvae of Ae. aegypti, Anopheles stephensi Liston, 1901, 
and Culex quinquefasciatus Say, 1823 is associated with the overexpression 
of cytochrome P450 and esterase family genes (Vivekanandhan et al., 
2021; Ramkumar et al., 2023).

The urgent development of new active ingredients is essential 
to ensure continued safety, cost-effectiveness, and sustainability of 
mosquito and vector control. In this context, biological control has 
emerged as a promising alternative, using predators or pathogens to 
reduce vector populations (Bellows and Fisher, 1999; Benelli et al., 2016). 
Effective predators include fish species that consume mosquito larvae 
and pupae, various aquatic invertebrates that feed on the immature 
stages of mosquitoes, and carnivorous plants capable of capturing 
and digesting mosquito larvae (Couret et al., 2020; Ranathunge et al., 
2021). Pathogens, such as entomopathogenic bacteria and fungi, release 
lethal toxins to mosquitoes, thus offering an effective control strategy 
(Samuels et al., 2016).

Given the serious impacts that chemical pesticides can cause, the 
biological control of Ae. aegypti larvae using the entomopathogenic 
bacterium B. thuringiensis (Bt) has gained prominence among the various 
tactics for integrated pest and insect vector management. During its 
sporulation phase, this bacterium produces protein inclusions known 
as δ-endotoxins, as well as other virulence factors such as β-exotoxins, 
hemolysins, enterotoxins, chitinases, and phospholipases (Bravo et al., 
2005). In the vegetative growth phase, Vegetative insecticidal proteins 
(Vip) are produced and secreted into the culture medium as soluble 
proteins (Estruch et al., 1996). Some strains are also capable of producing 
secreted insecticidal proteins (Sip), as well as biostimulatory molecules, 
biofertilizers, and parasporin proteins that exhibit specific cytotoxicity 
against human cancer cells (Raddadi et al., 2007; Okumura et al., 2011; 
Santos et al., 2022).

In addition to B. thuringiensis var. thuringiensis (Bti), other Bt strains 
have a highly effective gene profile against mosquito larvae of significant 
health importance (Valtierra-de-Luis et al., 2020). The proteins produced 
by Bt strains are highly specific to target insects and are synthesized as 
protoxins. After ingestion by the insect, these protoxins are solubilized 
in the alkaline environment of the midgut and cleaved by the insect’s 
proteases, activating them (Bravo et al., 2011). The active toxin then 
binds to specific receptors in the microvilli of the insect’s midgut, 
causing the intestinal cells to rupture and consequently paralyzing the 
digestive system, leading to death by starvation and septicemia (Glare 
and O’Callaghan, 2000; Raymond et al., 2010).

In Brazil, Embrapa Maize and Sorghum has Bt strains that exhibit a 
wide range of mortality rates, from 0% to 100%, against the fall armyworm 
Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae). This 

study aimed to identify and select strains from this Bt bank that are 
toxic to Ae. aegypti larvae.

Materials and methods

This study was conducted at the Biological Control Laboratory 
of Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais (MG), in 
partnership with the Oswaldo Cruz Institute.

Aedes aegypti eggs

We used Ae. aegypti eggs provided by the Vector Insect Laboratory of 
the University of Vassouras, Rio de Janeiro (RJ). Filter papers containing 
the Ae. aegypti eggs were placed in plastic containers (44 cm x 30 cm x 
8 cm) filled with distilled water preheated to 28 °C to stimulate larvae 
hatching. These containers were kept in a Biological Oxygen Demand 
(B.O.D.) incubator set at 28 ± 0.5 °C, 70 ± 10% RH, and a 12:12 light/dark 
photoperiod until the larvae reached the stage for use in the bioassays.

Preparation of bacterial suspensions

Bt strains (1120E, 1132C, 1132E, 1136B, 1145B, 1145C, 1148F, 1168C, 
1608A, 1641, 1644, 1656, and S462A) were previously collected from 
soil samples and grain dust at different locations in Brazil, which now 
are part of the Embrapa Maize and Sorghum Microorganism Bank. 
Each strain was grown in a Petri dish containing commercial Luria 
Bertani (LB) medium enriched with mineral salts (0.002g FeSO4, 
0.02g ZnSO4, 0.02g MnSO4, and 0.3g MgSO4) at 29 °C for 72 hours in 
a bacteriological oven to ensure the sporulation process and release 
of crystals. The bacterial content was then collected, transferred to 
Falcon tubes containing autoclaved deionized water, and diluted with 
a 0.05% Tween-20 emulsifier. Spores were counted using a Neubauer 
chamber under a phase-contrast optical microscope.

Selective bioassays against Aedes aegypti

Groups of 20 third-stage larvae were placed in 200 mL disposable 
cups, each containing 2 mL of each bacterial suspension (108 spores/
mL) in 18 mL of autoclaved deionized water. Each treatment was carried 
out using five replicates (R1, R2, R3, R4, and R5) adapted from WHO 
(2005), was carried out in three repetitions. A strain of B. thuringiensis 
var. thuringiensis israelensis registered as BtiJAB from the Embrapa 
Maize and Sorghum Microorganism Bank was used as the positive 
control, while the negative control consisted of autoclaved deionized 
water without the bacterial suspension. The larvae were kept on their 
normal diet, based on brewer’s yeast, at a rate of 0.3 mg per larva 
(Cabral et al., 2009). The treatments were kept in a B.O.D. incubator at 
25 °C, 70 ± 10% RH, and a 12:12 light/dark photoperiod. Larval mortality 
rates were estimated after 1 hour, 24 hours, 48 hours, and 72 hours 
of exposure to the bacterial suspensions, according Lobo et al. (2018). 
The data were subjected to analysis of variance (ANOVA; P ≤ 0.05), 
followed by factorial analysis using the Scott-Knott test (p>0.05), using 
the statistical software Sisvar Version 5.6.

Genomic DNA extraction and molecular characterization

Bt strains were grown in an LB culture medium at 29 ºC for 16 hours. 
After incubation, genomic DNA was extracted using the Wizard® Genomic 
DNA Purification Kit (Promega Corp., Madison, WI, USA), following the 
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manufacturer’s protocol. The quality of the extracted DNA was assessed 
after running the samples on a 1% agarose gel electrophoresis, and the 
quantification was performed using a Nanodrop device (ND-1000 V3.1.2 – 
Spectrophotometer). The samples were diluted to a concentration of 
10 ng/μL and stored at -20°C (Shuhaimi et al., 2001). PCR reactions were 
carried out using specific primers to detect the presence of cry, cyt, and 
vip genes (Table 1). The reactions consisted of 10 ng of DNA, 0.5 µM of 
each primer, 5 µM of each dNTP, 1x buffer solution, 2 mM MgCl2, and 
2 U of Taq polymerase (KAPA Biosystems, USA) in a total volume of 10 μL. 
The amplifications were performed in a Veriti® 96-Well Thermal Cycler 
under the following conditions: 94 ºC for 5 minutes; 35 cycles of 95 ºC 
for one minute, annealing at the temperature specific to each primer, 
and 72 ºC for one minute; final extension at 72 ºC for 10 minutes.

The PCR products were subjected to electrophoresis on a 1% agarose 
gel. A 1kb plus molecular weight marker (Invitrogen,USA) was used on 
the gel for band comparison.

Results

Pathogenicity of Bacillus thuringiensis

Among the 13 Bt strains tested, 1644, 1608A, and 1656 resulted 
in a mortality rate of over 70% for Ae. aegypti larvae. A Bti strain was 
used as the positive control in this study due to its proven efficacy 
against Culicidae of medical importance and its presence in various 
commercial products for mosquito control (Davidson and Sweeney, 
1983; Mohammad, 2022). Consequently, the BtiJAB strain caused 100% 
mortality in Ae. aegypti larvae. Similarly, strain 1644 was capable of 
causing 100% mortality in immatures within 24 hours. Up to 72 hours, 
strains 1608A and 1656 killed 95 and 85% of the larvae, respectively. 
The other strains exhibited low efficiency in controlling the target insect, 
with average mortality ranging from 0 to 53% (Table 2).

During the evaluation, a distinct behavior was observed between 
the larvae in the control group and those treated with the BtiJAB strain 

(positive control) (Figures 1C and 1D), as well as strains 1644, 1608A, 
and 1656. The larvae contaminated by these Bt strains lost their agility, 
spending most of their time at the bottom of the plastic container 
without feeding, and rarely surfacing to breathe. The larvae slowed 
down their movements to a standstill, and their tegument changed color, 
becoming matte. The larvae became flaccid, and upon death, there was 
a darkening of the muscles and fatty body, indicating the onset of tissue 
deterioration. These changes may indicate the toxic effect caused by 
ingesting the spores and crystals of the Bt strains (Figures 1C, 1E, 1G).

This evaluation showed that the observed changes were dependent 
on the Bt strains tested. The Ae. aegypti larvae in the negative control 
group maintained a normal elongated and vermiform appearance, with 
a body visually divided into the head, thorax, and abdomen. The thorax 
was wider than the head and had tufts of bristles, which were also 
present on the abdomen (Figures 1A and 1B). According to Serra-Freire 
and Mello (2006), the general characters of the first body parts of Ae. 
aegypti larvae are globose, and the abdomen consists of 10 segments, 
with the eighth segment having a pair of spiracles located at the end 
of the siphon (tubular organ).

During exposure to the Bt strains, we observed that the Ae. aegypti 
larvae showed reduced agility, spending most of their time at the 
bottom of the container without feeding and rarely rising to the surface 
to breathe. Their movements gradually slowed to a complete stop, 
and their integument changed color, adopting a matte appearance. 
The larvae became flaccid, and, upon death, their muscles and fatty 
bodies darkened, initiating a process of tissue deterioration. This indicates 
the toxic effect resulting from ingesting the spores and crystals of the 
Bt strains (Figures 1E, 1F, 1G, 1H, 1I, 1J).

The main changes in larvae treated with Bt strains include a narrowing 
of the mesenteron, a decrease in body fat, thickening of the peritrophic 
membrane, leakage from the intestine, elongation of the cervix, and 
spacing of the anal papillae. The morphology of the anal papillae can 
affect the regulation of osmotic functions, influencing the survival of Ae. 
aegypti larvae (Chaithong et al., 2006). These observations are consistent 

Table 1 
Primers used for genomic DNA amplification of Bacillus thuringiensis strains.

Target genes Primers sequences (5’-3’) Tm (°C) Fragment size (bp) Reference

cry1Aa TGTAGAAGAGGAAGTCTATCCA 53 272 Ceron et al. (1995)

TATCGGTTTCTGGGAAGTA

cry 1Ab CGCCACAGGACCTCTTAT 55 232 Valicente et al. (2010)

TGCACAACCACCTGACCCA

cry1B CTTCATCACGATGGAGTAA 55 367 Ceron et al. (1994)

CATAATTTGGTCGTTCTGTT

cry1C AAAGATCTGGAACACCTTT 58 130 Ceron et al. (1994)

CAAACTCTAAATCCTTTCAC

cry1D ATATGGAGTGAATAGGGCG 55 235 Ceron et Al. (1995)

TGAACGGCGATTACATGC

cry2Ac ACAGCAGTCGCTAGCCTTGT 55 475 Fagundes et al. (2022)*

CAAATTGTGGATTGCCGTTA

cry2Ad ACGATATCGCCACCTTTGTC 53 282 Fagundes et al. (2022)*

AGGTGTTCCTGAAGGGCTTT

cyt1 CCTCAATCAACAGCAAGGGTTATT TGCAAACAGGACATTGTATGTGTAATT 52 477 Ibarra et al. (2003)

cyt2 ATTACAAATTGCAAATGGTATTCC TTTCAACATCCACAGTAATTTCAAATGC 50 356 Ibarra et al. (2003)

vip1 TTATTAGATAAACAACAACAAG AATATCAATCTATTMGNTGGATHGG 48 585 Hernández-Rodríguez et al. (2009)

GATCTATATCTCTAGCTGCTTTTT CATAATCTSARTANGGRTC

vip2 GATAAAGAAAAAGCAAAAG AATGGGRNAARRA 48 845 Hernández-Rodríguez and Ferré (2009)

CCACACCATCTATATACAGT AATATTTTCTGGDATNGG

vip3 TGCCACTGGTATCAARGA 48 1621 Hernández-Rodríguez and Ferré (2009)

TCCTCCTGTATGATCTACAT ATGCATTYTTRTTRTT

*Unpublished data
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Figure 1. Light photomicrographs of the morphological aspects of 3rd instar Ae. aegypti larvae. Larva from the control treatment showing highlighted structures, with no al-
terations to the head, segments of the abdomen, respiratory siphon and anal papilla (A and B). Larva exposed to the standard BtiJAB strain with changes in the segments of the 
abdomen (dark pigmentation) (black arrow), loss of external hairs, and slight spacing in the anal papillae (hollow arrow) (C and D). Larva exposed to strain 1644, showing a strong 
darkening in the trunk region and along the extremities of the body, accentuating the darkening in the anal papillae (black arrows), the toxic effect of this strain also induced 
spacing of the anal papillae (hollow arrow) (E and F). Larva treated with strain 1608A showing darkening of the intestine and extremities of the body (black arrows), in addition 
to the translucent tracheal system and spacing of the anal papillae (G and H). Larva exposed to strain 1656 showing a damaged intestinal tract (black arrow), spacing of the anal 
papillae (hollow arrow), partial extrusion of the intestinal contents, a desiccated larva and the exuvia of the instar attached to the respiratory siphon region (dotted arrow) (I and 
J). Note: A, abdomen; H, head; T, thorax; RS, respiratory siphon; AP, anal papillae; LH, lateral hairs.
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with those reported by Fujiwara et al. (2017) and Lobato Rodrigues et al. 
(2021), who, in addition to observing lethargic movement of Culicidae 
larvae exposed to natural substances extracted from plants, noted the 
shortening and darkening of the abdomen and morphological changes 
in the anal papillae of Ae. aegypti.

Detection of cry, cyt, and vip genes

The PCR reactions revealed that the 1644 strain, which proved to 
be efficient in controlling Ae. aegypti, amplified cry1Aa, cry1B, and 
cry1C genes. Strain 1608A contained cry1Ab, cry1G, cry2Ab, cry2Ac, 
and cry2Ad genes, while strain 1656 showed amplifications for cry1A, 
cry1Aa, cry1Ac, cry2Aa, cry2Ad, and vip3 genes (Table 2).

Discussion

The crystalline Bt inclusions, especially the δ-endotoxins, are 
present in several commercial bioproducts that effectively target 
major noctuid pests in the agricultural sector worldwide. In the 
specific case of the entomopathogenic bacterium B. thuringiensis var. 
israelensis, its use is particularly notable for controlling mosquito 
vectors (Priest, 1992; Lacey, 2007). Given the broad spectrum of 
action of its proteins, its efficacy, and the specificity compared to 
chemical control methods, using B. thuringiensis as a biological agent 
is considered an excellent tool for the integrated management of 
insect vectors in public health.

Floore (2006), Benelli  et  al. (2016), and Hegazy  et  al. (2022) 
described the key points in the use of major control strategies against 
mosquitoes in recent decades, including microbial control, particularly 
when Bacillus-based products are used on the larval stages of the target 
insects. This relevance has driven the search for new strains with high 
toxic activity against certain species of the suborder Nematocera, which 
transmit arboviruses and/or cause diseases in animals and humans.

Xinmin Ma et al. (2023) and Fatima et al. (2023) have also demonstrated 
that selective bioassays using Bt suspensions containing spores and 
crystals are highly viable in laboratory conditions. Furthermore, 
integrating this methodology with other management tactics enhances 
the high efficacy of this biological agent, particularly against mosquitoes 
of the genera Aedes, Culex, and Anopheles.

Habib and Andrade (1998) described the main symptoms of Bt 
infection in agriculturally important caterpillars, including appetite loss 
and food abandonment at the onset of bacteriosis. Affected caterpillars 
experience regurgitation and diarrhea, loss of shine in the integument, 
and matte coloration due to changes in the internal tissues and 
hemolymph. They also show a loss of agility and, in some cases, notable 
flaccidity in the body. After paralysis and death, the dead caterpillars’ 
skin color can change from cream to black. This symptomatology in 
lepidopterans has guided and encouraged the use of the bacterium 
Bti to control vectors of major epidemiological importance, including 
aquatic dipteran larvae.

In susceptible Culicidae and Simuliidae larvae, the Bti crystals are 
also ingested in the form of protoxins, which, after being solubilized 
by proteases in the midgut, become activated (toxic) and interact with 
receptors present on the apical microvilli of the intestinal epithelium 
(Soberón et al., 2007; López_Molina et al., 2020). This binding results 
in the formation of pores in the cell membrane, disrupting the ionic 
balance of the tissue membrane and causing alterations and/or lesions 
in the intestinal epithelium as well as other organs and systems. This 
process ultimately leads to the insect’s death (Ben-Dov, 2014; Silva-
Filha et al., 2021).

In the present work, the occurrence of these characteristic symptoms 
was verified, along with the presence of deformities in the anal papillae, 
which is due to the insecticidal behavior of Bt strains in Culicidae and 
some plant extracts potentially used in dipteran control (Valotto et al., 
2011; Soonwera et al., 2022). After 24 hours of treatment with strains 
1644 and 1608A, external morphological anomalies in the anterior 
mesenteric region of the larvae showed a high degree of destruction, 
as noted by Viana et al. (2020) and Bibi et al. (2020) in Aedes larvae 
treated with natural plant substrates and red algae.

Generally, the symptoms reported in Diptera larvae infected by Bt 
are similar to those observed in Lepidoptera larvae, including persistent 
disturbances in the digestive system, such as regurgitation or diarrhea 
(Glare and O’Callaghan, 2000). This is followed by effects on the larval 
integument, with a gradual loss of coloration until it reaches a dark 
brown hue. Additionally, infected larvae can lose their agility and, in 
some cases, become unresponsive to touch stimuli, becoming flaccid 
and ultimately experiencing a total loss of movement.

Small variations in the stages of the mode of action can occur 
depending on the Bt infection and the susceptibility of the target insect 

Table 2 
Gene content of Bacillus thuringiensis strains and mortality percentage (%) of Aedes aegypti larvae after application of suspensions of 1.5 x 108 crystal spores/ml.

Treatments

Genes Mortality (%)

cry cyt vip Time after application (h)

cry1Aa cry1Ab cry1B cry1C cry1G cry2Aa cry2Ac cry2Ad cyt1 cyt2 vip1 vip2 vip3 1 24 48 72

WaterA - - - - - - - - - - - - - 0 0 0 0

BtiJABB - - - - - - - - - - - - - 100 100 100 100

1644* C + - - - - - - - - - - - - 0 100 100 100

1608A* C - + - - + + + + - - - - - 0 95 95 95

1656 C + - - - - + - - - - + - + 0 45 30 10

S462A C - - + - - - - - - - - - - 0 0 0 5

1132C C - - - - - - - + - - + - + 0 5 0 15

1145B C - - + - - - - - - - + - + 0 5 0 5

1148F C - - - - - - - - - - - - + 0 5 0 0

1641* C - - - - - - - - - - + + + 0 0 0 0

1138G C - - + - - + - - - - + - + 0 0 0 0

1438 C - - + - - - - + - - - - + 0 0 0 0

1136B C - - - - - - + - - - + - + 0 0 0 0

1132E C - - + - - - - - - - - - + 0 0 0 0

(+) presence of the gene; (-) absence of the gene. AAutoclaved distilled water used as a negative control. BStrain used as negative control. CStrains used in the selective bioassays. 
*Data published: Valicente et al. (2010); Carvalho et al. (2020); Pinheiro and Valicente (2021).
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(Bravo et al., 2013; Pacheco et al., 2023). Therefore, the external changes 
observed in this study, especially in the anal papillae region, are crucial for 
understanding the characteristic symptoms of Bt infection in Ae. aegypti.

PCR-based gene profiling with specific primers for cry, cyt, and vip 
genes is widely used in characterization studies of Bt strains. This technique 
allows for a better understanding of the specific pathogenicity of Bt 
proteins against different insect orders (Bravo et al., 1998; Gu et al., 2021).

Even though the pesticidal Bti proteins, which include the Cry4, 
Cry10, and Cry11 family genes specific to mosquitoes, are not present 
(Fernández  et  al., 2005; López-Molina  et  al., 2021), strains 1644, 
1608A, and 1656 still demonstrated insecticidal activity against Ae. 
aegypti. This spectrum of susceptibility is due to the presence of 
genes from the Cry1 (cry1A, cry1B, cry1C, cry1G) and Cry2 (cry2Aa, 
cry2Ab, cry2Ac and cry2Ad) families. These findings corroborate the 
distribution of pesticidal activities of Bt proteins affecting the main 
species of the orders Lepidoptera, Diptera, and Coleoptera, as reported 
by Van Frankenhuyzen (2009, 2013). When evaluating these same 
genes, the author found toxicity to 23 dipteran species, including Ae. 
aegypti, a vector of significant human diseases, and highlighted the 
existence of cross-activity, with the Cry1 family being pathogenic to 
both Lepidoptera and Diptera.

Similar to this study, the presence of the cry1 and cry2 genes was 
frequent, occurring in around 80% to 100% of the Bt isolates molecularly 
characterized by Praça  et  al. (2004), Monnerat  et  al. (2007), and 
Boonmee et al. (2019). Another commonly observed factor was the 
co-occurrence of these two crystalline proteins in the genetic profile 
of Bt strains effective against various insects (Ben Dov  et  al.,1997; 
Adedayo and Uthman, 2021).

The classification by Schnepf et al. (1998) and Crickmore et al. (1998, 
2021) highlights significant progress in understanding the toxic effects 
of Bt Cry proteins on various target organisms, including nematodes and 
human cancer cells. The continued investigation of its insecticidal activity 
on other invertebrates of agricultural, veterinary, or medical-sanitary 
importance is crucial. Our data align with the current nomenclature and 
reaffirm the potential action of Cry proteins on the main arbovirus vector.

Gómez et al. (2002) and Ibrahim et al. (2010) showed that different 
parasporal crystals are composed of single or multiple Cry proteins. 
Investigations into protein-receptor interactions provide a wealth of 
information on the spectrum of action and specificity of δ-endotoxins 
(Cry and Cyt proteins) with target insects. This is evident in other studies 
that have demonstrated the high degree of affinity of the Cry1A protein to 
the surface receptors and ion channels of the mesentera of lepidopterans, 
coleopterans, and dipterans. Such affinity has consequently led to high 
mortality rates of these insects under both experimental laboratory and 
field conditions (Gómez et al., 2014; Jneid et al., 2022; Liu et al., 2022).

Of the three strains (1644, 1608A, and 1656) that were effective 
against the larvae of Ae. aegypti, only strain 1656 amplified the vip3 gene. 
This finding aligns with Wang et al. (2020), who provided the first 
evidence that the Vip3Aa protein is toxic to Ae. aegypti. Furthermore, 
this toxicity may be associated with the presence of the cry1 and 
cry2 genes. The correlation between the occurrence of the cry1, cry2, 
and vip genes was previously reported by Hernández-Rodríguez and 
Ferré (2009) and Hernández-Rodríguez et al. (2009) when identifying 
and classifying cry and vip genes in a collection of 507 Bt strains from 
Spain and Bolivia, respectively.

We found that the Cry1 and Cry2 Bt family genes present in strains 
1644, 1608A, and 1656 exhibit joint insecticidal activity against insects 
of the orders Lepidoptera and Diptera, which may have contributed to 
the toxicological response observed in Ae. aegypti larvae.

The 1644 strain, which proved to be efficient in controlling Ae. aegypti, 
presented the cry1B, cry1C, cry1D, and cry1Fb genes in a comparative 
analysis of cry genes carried out by Valicente and Lana (2008). The authors 

found that this strain also effectively controlled the fall armyworm S. 
frugiperda, one of the primary pests of economically important crops 
such as corn, soybeans, sorghum, and cotton, among others.

In the study by Carvalho et al. (2020), strain 1608A was found to contain 
the cry1Ab, cry1G, cry2Ab, cry2Ac, and cry2Ad genes. The authors examined 
the pathogenicity of Bt strains against several key pests of soybean crops 
in Brazil, including Chrysodeixis includens Walker, 1858 (Lepidoptera: 
Noctuidae), Spodoptera cosmioides Walker,1858 (Lepidoptera: Noctuidae), 
Spodoptera eridania Cramer, 1782 (Lepidoptera: Noctuidae), and S. 
frugiperda. The findings from both Carvalho et al. (2020) and our research 
indicate that strains like 1644 and 1608A hold significant promise for 
controlling insect pests and vectors across different orders.

Similar to our study, Santos  et  al. (2012) and Wu  et  al. (2021) 
found different Cry proteins to be effective against Ae. aegypti larvae. 
This demonstrates the importance of also evaluating the potential of 
Bt strains tested on lepidopteran pests for use against culicids, as the 
proteins present in these Bt strains can be toxic to mosquito larvae.

Although most studies involving the selection of Bt strains for the 
control of Ae. aegypti highlight the pathogenicity of Bti against this 
vector, we did not perform a serological analysis of the subspecies 
of the Bt strains. This type of characterization does not consider the 
genes present in the Bt strains (Valicente, 2019). In the case of the 
BtiJAB strain, we are aware of its variety because it is a strain from the 
Embrapa Maize and Sorghum Microorganism Bank specifically used 
as a positive control in studies selecting strains against mosquitoes. 
Thus, we demonstrated that molecular characterization is an extremely 
useful tool for the integrated management of insect vectors and that 
strains 1644, 1608A, and 1656 presented toxic proteins to Ae. aegypti 
larvae and proved efficacious in bioassays.

In conclusion, the pathogenicity of the Bt strains was confirmed 
against third-stage Ae. aegypti larvae, with strains 1644, 1608A, and 
1656 demonstrating high efficacy. Further studies are needed to explore 
these strains and their potential applications as public health tools to 
combat mosquitoes and mosquito-borne pathogens.

Conclusion

Bt is a highly effective tool for the biological control of insect pests 
and disease vectors. This study demonstrated the pathogenicity of Bt 
strains against third-stage Ae. aegypti larvae, with strains 1644, 1608A, 
and 1656 showing significant efficacy. These strains hold promise as 
potential sources for biopesticide formulations, offering a valuable 
solution to combat resistance issues in Ae. aegypti and other medically 
important Culicidae. Further research on these strains could enhance 
public health efforts to control mosquito-borne diseases.
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Supplementary Material

The following online material is available for this article:

Figure S1 - PCR-amplified fragments for cry-specific genes from Bacillus thuringiensis strains. (A) cry1G gene and its positive control (C+): 
1657 strain, (B) cry2Aa gene and its positive control (C+): 344 strain, C-: Negative control (sterile water). (C) cry2Ac gene and its positive control 
(C+): 1657 strain, C-: Negative control (sterile water). (D) cry2Ad gene and its positive control (C+): 1657 strain, C-: Negative control (sterile 
water). MM: Molecular marker 1Kb plus (Invitrogen, Tech-line, USA). NA: Samples not applicable to this work. The white arrows indicate the 
size of the amplified fragment.

Figure S2 - PCR-amplified fragments for the cyt genes of Bacillus thuringiensis strains efficient against Aedes aegypti. (A) cyt1 gene and its 
positive control (C+): Strain T14, (B) cyt2 gene and its positive control (C+): Strain T14, C-: Negative control (sterile water); M: 1Kb plus molecular 
marker (Invitrogen, Tech-line, USA). NA: samples not applicable to the present work. The white arrows indicate the size of the amplified fragment.

Figure S3 - PCR-amplified fragments for vip genes from Bacillus thuringiensis strains efficient against Aedes aegypti.(A) vip1 gene and its 
positive control (C+): HD-125 strain,(B) vip2 gene and its positive control (C+): 1657 strain, (C) vip3 gene and its positive control (C+): 1657 strain, 
C-: Negative control (sterile water), MM: Molecular marker 1Kb plus (Invitrogen, Tech-line, USA). NA: Samples not applicable to this work. The 
red arrows indicate the amplification products of the Bt strains, and the white arrows indicate the size of the amplified fragment.

Figure S4 - Larvicidal effect of Bacillus thuringiensis (Bt) 1644 strain on Aedes aegypti larvae: comparison between control group larvae and 
those exposed to the bacterial suspension of 1644 strain. The graphical abstract illustrates the spore-crystal complex of the 1644 Bt strain, as 
well as the external symptoms observed in the respiratory siphon and anal papillae of treated larvae, including a gradual loss of coloration until 
reaching a dark brown hue, in addition to the spacing observed in the anal papillae.


