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Abstract

The variability in genetic variance and covariance due to genotype × environment interaction

(G×E) can hinder genotype selection accuracy, especially for complex traits. This study ana-

lyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict

agronomic performance in untested environments using factor analytic multiplicative mixed

models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava geno-

types for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter con-

tent (DMC) across 55 Brazilian environments. FAMM was applied to estimate genetic

values and environmental loads, revealing significant genetic variance, especially for FRY

(0.16–0.92) and broad-sense heritability (Ĥ2) above 0.70 in advanced yield trials. In joint

analyses, analytic factor FA4 explained over 88% of genetic variation for all traits despite

high G×E and data imbalance. Positive genetic correlations were found between environ-

ments for ShY and DRY (0.99 and 1.0, respectively), while FRY and DMC showed negative

correlations (-0.82 and -0.95). Latent regression analysis identified hybrids adaptable to a

range of environments, as well as genotypes suited to specific conditions. Moderate correla-

tions between environmental covariables (rainfall, altitude, solar radiation) and FA model

loadings suggest these factors contribute to high G×E interactions, notably for FRY. The

FAMM model provided a robust approach to G×E analysis in cassava, yielding practical

insights for breeding programs.

1. Introduction

Cassava (Manihot esculenta Crantz) is a globally cultivated crop and plays a crucial role in

ensuring food security. Its roots are used in the production of a wide range of industrialized

products, making them economically significant for numerous countries [1,2]. Brazilian pro-

duction of cassava represents approximately 10.0% of global production, being cultivated

across 1.19 million hectares, spanning from the North to the South of the country. The
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cultivation across different biomass exposes cassava to adverse and contrasting climatic and

soil conditions, being highly influenced by the environment [3]. The plants respond to a multi-

tude of environmental signals, both biotic and abiotic, and can generate different responses to

environmental conditions. This phenomenon, known as genotype-environment (G×E) inter-

action, poses a challenge in the selection process [4,5].

The G×E interaction refers to the way in which different genotypes (genetic makeup) of a

species respond to various environmental conditions. This variation can make it challenging

to select genotypes that perform consistently across all environments, as their growth and yield

can be highly influenced by several environmental factors. Therefore, new approaches that

effectively capture these interactions can help in the selection of the best-performing clones

evaluated over different years, environments, and growing seasons.

To address the adverse impacts of genotype-environment interactions, notably the incon-

sistency in agronomic performance observed over years in the targeted cultivation environ-

ments due to varying environmental stimuli, cassava breeding programs in Brazil undertake

uniform yield trials (UYT). These trials gather agronomic data to recommend new cassava

varieties, employing larger plots (consisting of 40 to 60 plants), greater number of replications,

and multiple cultivation sites. Regional comparative tests are typically conducted in parallel

with UYT, evaluating commercial varieties and new cassava clones that are nearing commer-

cial release. These evaluations are performed over several years in multi-environment trials

(METs), with the goal of evaluating how different environments affect the performance of the

genotypes. METs help breeders determine which genotypes are adaptable and stable across

various conditions.

METs are characterized by a large number of environments and an imbalance of tests

within and between locations. This imbalance arises from the removal of unproductive clones

throughout the selection process and their replacement with promising clones. Additionally,

the loss of experimental plots further complicates the joint analysis of METs. However, METs

provide an opportunity to observe and quantify phenotypic expression levels in response to

environmental variations, such as different years and cultivation locations. In this study, the

gap lies in the need to better understand the complexities of G×E interactions and their impact

on genotype selection, particularly in the context of cassava breeding.

In MET trials, the genetic and environmental effects can be partitioned, allowing for the

quantification of each factor’s contribution (G + G×E), thereby facilitating the exploration of

the beneficial effects of G×E interaction. Therefore, METs enable the assessment of genotype

adaptability to general or specific environments and the evaluation of yield stability across dif-

ferent target environments. These parameters are essential for recommending new cassava

clones.

The investigation of G×E interaction involves considering the heterogeneity of genetic vari-

ance and covariance across different environments. Genetic variance refers to the variability in

a trait that is due to genetic differences among individuals, while covariance is a measure of

how two variables change together, in this case, how genetic factors interact with environmen-

tal factors. Similar environments tend to elicit similar responses in genotypes, leading to strong

genetic correlations [4,6,7]. However, this poses challenges when fitting models to explore the

effects of G×E interaction, as it increases the number of estimated parameters [8]. Mixed mod-

els offer an alternative approach for analyzing MET assays, as they provide more information

and flexibility in estimating variance components and identifying genetic and environmental

parameters that are closely related to genotype performance. This aids breeders in making

decisions regarding the recommendation of new varieties [9–11].

The use of basic variance component models has been found insufficient in modeling G×E

interactions, as they overlook the covariances between genetic and non-genetic effects across
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diverse environments. In the mixed model approach, the genetic variance and covariance

matrix (VCOV) is adjusted to model the genetic and residual correlations between environ-

ments. The residual correlation refers to the unexplained variation in the data after accounting

for the factors included in the model The unstructured matrix represents the most complex

VCOV structure, accounting for the heterogeneity of variations between environments and all

possible specific covariances between pairs of environments [12]. In case of METs with large

number of environments and genotypes tested, model convergence becomes challenging due

to the high number of estimated parameters. Therefore, a flexible model that reduces the num-

ber of estimated parameters is often required [10]. As a result, many genetic improvement pro-

grams have adopted the mixed model approach, specifically the multiplicative mixed model

known as the analytic factor (FA) model [11,13–15].

In contrast to simpler models, the FA mixed model offers several advantages. First, it allows

the use of unstructured models, enabling the estimation of variances and covariances associ-

ated with G×E in a parsimonious manner. Second, it facilitates the estimation of genotypic

and environmental coefficients, including loads and factor scores, respectively. Third, by uti-

lizing best linear unbiased predictors (BLUPs), it enables the estimation of genotypic effects

that are correlated across multiple trials. Fourth, it identifies the presence of residual variance

heterogeneity in non-orthogonal experiments (utilizing an unstructured type VCOV matrix)

and accounts for the effect of genotypes within environments with limited variance parame-

ters, even with a high number of genotypes and environments. Finally, it combines multiple

regression and principal component analysis in a single model, accommodating unbalanced

data and allowing for selection in untested environments [10,11,13–15]. Furthermore, the FA

model facilitates graphical representations through multiple latent regressions and heat maps

for visualizing genetic correlations between pairs of environments [15,16].

Although several studies have highlighted the importance and advantages of exploring G×E

using the FA model [16–19], this approach has yet to be explored in cassava breeding pro-

grams. On the other hand, most quantitative data from MET trials for cassava are unbalanced,

exhibit high environmental variance, and show correlations between trials. These analyses can

benefit from capturing the VCOV matrix using FA models, which increase the precision and

efficiency of selection, even in untested environments. Additionally, incorporating environ-

mental data in the study of G×E interactions generally enhance the robustness and validity of

factor analysis results, as environmental data play a critical role by providing context, aiding

interpretation, and controlling for confounding variables. Moreover, incorporating environ-

mental covariates enables the prediction of common latent factors with observable GxE inter-

actions [12,20]. Therefore, FA models offer numerous advantages for routine cultivar selection

activities in cassava breeding programs.

The hypothesis articulation involves the use of FA models to better understand and predict

the interaction between genotype and environment, improving cassava breeding programs

through more accurate and efficient selection processes. Therefore, the objectives of this study

were: 1) to investigate G×E in historical data from the cassava breeding program at Embrapa,

focusing on the adaptability and stability of genotypes using the FA model; 2) to select stable

and adapted genotypes with genetic gains for four agronomic variables of interest, namely

fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content

(DMC), in target environments; 3) to predict the performance of genotypes in environments

where they were not evaluated in the METs; 4) to identify the environmental covariates that

best explain G×E and the genetic correlations between environments in the cassava breeding

program tests, and 5) Compare the ability to capture G×E interactions and the model fit of the

FA model with the AMMI and GGEbiplot methods.
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2. Material and methods

2.1. Genetic material and experimental design

The dataset used in this study consisted of METs conducted by the cassava breeding program

at Embrapa Mandioca e Fruticultura. It included a total of 22 cassava genotypes, with six geno-

types in the validation phase and 16 commercial varieties, which served as control or reference

genotypes (Table 1). The trials were conducted across 17 locations over the crop seasons from

2013 to 2021, and each combination of year and location (Year × Location) was considered as

an environment (S1 Table). The evaluations took place in the states of Bahia (BA), Minas

Gerais (MG), and Mato Grosso do Sul (MS), which are classified as tropical hot and humid

regions. In BA and MG, rainfall is concentrated between April and July, with an average

annual precipitation above 1100mm in an irregular pattern. In MS, the rainy season extends

from October to March, with a prolonged dry period of 5–7 months. Additional details regard-

ing soil type, geographical coordinates, and climatic variables during the period of conducting

the trial, days between planting and harvest, are presented in Table 2.

The soil preparation followed the conventional practices, which involved one plowing, two

harrowing, and the creation of planting furrows approximately 20 cm deep. The planting itself

was carried out manually, placing the stems horizontally in the planting rows. We used stan-

dard cassava stems measuring 16–18 cm, from 10-12-month-old stems that were free of pests

and diseases. Fertilization and other cultural practices were performed according to the

Table 1. Agronomic description of the 22 cassava genotypes evaluated in several locations over the crop seasons from 2013 to 2021.

Genotypes *Origin Type (HCN) Peel color Pulp color Inter rind color Consumption

New clones

BR11-24-156 CNPMF Bitter Dark brown White Cream Processing

BR11-34-41 CNPMF Bitter Light brown White Cream Processing

BR11-34-45 CNPMF Bitter Light brown White Cream Processing

BR11-34-64 CNPMF Bitter Dark brown White Cream Processing

BR11-34-69 CNPMF Bitter Light brown White Cream Processing

BR12-107-002 CNPMF Bitter Light brown White Cream Processing

Checks

BRS Caipira CNPMF Bitter Dark brown White White Processing

BRS Dourada CNPMF Sweet Dark brown Creme Light pink Fresh consunptiom

BRS Formosa CNPMF Bitter Dark brown White White Processing

BRS Gema de Ovo CNPMF Sweet Dark brown Cream White Fresh consunptiom

BRS Kiriris CNPMF Bitter Dark brown White White Dual purpose

BRS Mulatinha CNPMF Bitter Dark brown White White Processing

BRS Novo Horizonte CNPMF Bitter White White White Processing

BRS Poti Branca CNPMF Bitter White White White Processing

BRS Tapioqueira CNPMF Bitter Dark brown White Purple Processing

BRS Verdinha CNPMF Bitter White White White Processing

Cigana Preta DP Bitter Dark brown White White Processing

Correntão DP Bitter Dark brown White White Processing

Corrente DP Bitter Dark brown White White Processing

Eucalipto DP Sweet Dark brown Cream White Fresh consunptiom

IAC-90 IAC Bitter White White White Processing

Vassoura Preta DP Bitter Dark brown White Cream Processing

*CNPMF, Embrapa Mandioca e Fruticultura; IAC, Campinas Agronomic Institute; DP, Public Domain.

https://doi.org/10.1371/journal.pone.0315370.t001
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recommended guidelines for cassava cultivation for the target regions based on soil analysis

[21]. The trials were arranged in a randomized complete block design with three replications

per trial. Each plot consisted of 4–6 rows with 20–25 plants per row, spaced 0.90 m apart

between rows and 0.80 m between plants. All field trials were conducted during the rainy sea-

son under rainfed conditions (without supplemental irrigation). The genotypes evaluated are

part of the UYT trials from the Embrapa breeding program, selected to meet the target product

profile for the development of industrial cassava (starch and cassava flour) adapted to the

Northeast and Mid-South regions of Brazil, in rainfed, low to mid-altitude, dry/wet agro-

ecologies.

At 12 months after planting, the following traits were evaluated: 1) Fresh root yield (FRY),

which is the total weight of all roots in the useful plot (16 plants per plot), measured using a

suspended digital scale and adjusted to tons per hectare (t ha-1); 2) Shoot yield (ShY), repre-

senting the above-ground biomass of all plants in the plot after detaching the roots, including

stems, leaves, and petioles, adjusted to t ha-1; 3) Dry matter content in the roots (DMC),

expressed as a percentage (%), determined using the the gravimetric hydrostatic balance

method. A 5 kg sample of roots was cleaned to remove excess soil, then weighed on a digital

scale to obtain the weight in air, then the sample was placed in a pre-weighed basket, immersed

in water using a hydrostatic balance, and the weight in water was recorded. The following

Table 2. Location and description of the cassava genotype evaluation environments from 2013 to 2021.

Environments Year Tmax Tmin Tav Annual precipitation Rh% W/speed Sol/rad Altitude Latitude Longitude soil type

Laje–BA (PP) 2013 29.96 22.32 25.46 1300.09 75.55 1.89 17.09 190 13˚09052” 39˚25059” LYRd

Laje–BA (NH) 2015 30.46 22.40 25.78 980.08 73.87 1.84 17.83 190 13˚09052” 39˚25059” LYRd

Laje–BA (SJ) 2016 30.94 22.54 26.02 924.66 72.11 1.89 18.51 190 13˚08036” 39˚25046” LYRd

Laje–BA (SV) 2017 30.07 22.12 25.39 948.66 72.87 1.99 18.67 190 13˚08036@ 39˚25046” LYRd

Laje–BA (RA1) 2018 30.72 22.36 25.82 835.62 71.91 1.87 17.98 190 13˚08047” 39˚17058” LYRd

Laje–BA (RA2) 2019 31.16 22.76 26.25 834.08 71.56 1.89 19.38 190 13˚09052” 39˚25059” LYRd

Laje–BA (Capela) 2020 30.46 22.69 25.89 1022.68 75.02 1.87 17.62 190 13˚39052” 39˚25059” LYRd

Laje–BA (NH) 2021 29.56 23.54 26.02 908.40 76.23 2.18 17.17 190 13˚09052” 39˚25059” LYRd

Cruz das Almas–BA 2014 32.09 20.05 25.06 736.79 68.81 2.78 18.73 220 12˚39011” 39˚07019” LYRd

Cruz das Almas–BA 2018 32.58 20.24 25.39 684.71 67.29 2.72 18.38 220 12˚39011” 39˚07019” LYRd

Cruz das Almas–BA 2019 32.92 20.54 25.73 801.18 67.78 2.71 18.98 220 12˚39011” 39˚07019” LYRd

Cruz das Almas–BA 2020 31.70 20.52 25.18 1019.36 73.03 2.61 17.32 220 12˚39011” 39˚07019” LYRd

Cruz das Almas–BA 2021 31.85 20.28 25.07 857.04 74.61 2.29 15.82 220 12˚39011” 39˚07019” LYRd

Santo Amaro–BA 2016 30.32 23.22 26.06 779.09 73.23 2.38 19.12 42 12˚32048” 38˚42043” V

Santo Amaro–BA 2017 29.43 22.81 25.42 1117.68 75.28 2.43 19.26 42 12˚32048” 38˚42043” V

Valença–BA (NR) 2014 28.64 19.68 23.24 2130.00 74.89 1.92 18.17 39 13˚22026” 39˚04030” LaD

Valença–BA (NR) 2015 29.22 19.90 23.86 1622.00 73.86 1.84 17.85 39 13˚22026” 39˚04030” LaD

Valença–BA (NR) 2019 29.55 20.36 24.24 1512.00 71.56 1.89 19.38 39 13˚22026” 39˚04030” LaD

Governador Mangabeira –BA 2020 25.18 20.52 22.85 1019.36 73.03 2.61 17.32 200 12˚34023” 38˚42053” LYRd

Florestal–MG 2020 28.64 17.30 22.97 1849.80 74.44 2.42 20.60 815 19˚53’12” 44˚25’56” AYRD

Alcobaça–BA 2021 25.96 25.05 25.47 726.34 78.84 4.63 16.95 16 17˚31’21” 39˚11’53” PDQS

Alagoinhas–BA 2021 31.86 20.27 25.07 857.04 74.57 2.29 18.93 230 12˚07’13” 38˚24’35” PYR

Entre Rios–BA 2021 31.18 21.00 25.04 1104.77 77.78 1.10 16.66 162 11˚56’31” 38˚05’04” PYR

Dourados–MS 2021 32.43 17.66 24.05 707.10 64.85 0.24 18.17 469 22˚11’16” 54˚54’20” LRDF

Itamarajú –BA 2021 30.25 20.58 24.47 1136.0 77.69 1.00 18.13 112 17˚02’21” 39˚31’52” LYRd

Soil class: LYRd—dystrophic red yellow latosol; LaD—dystrophic latosol and dystrophic red yellow podzolic; V—vertisol and red yellow podzolic; PYR—red yellow

podzolic and red yellow latosol; PDQS–podzol and dystrophic quartz sands; AYRD–dystrophic red yellow argisol; LRDF—red latosol and dystroferric red latosol.

https://doi.org/10.1371/journal.pone.0315370.t002
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formula was used: DMC ¼ 158:3 x weight in air
weight in air� weight in water

� �
� 142:0, described by [22]; and 4)

Dry root yield (DRY), estimated per plot and measured in t ha-1, obtained of the product

between FRY and DMC.

2.2. Individual analysis of phenotypic data

In the initial step of the analysis, each individual trial was evaluated to assess the quality of the

data in terms of accuracy, experimental precision, coefficients of variation, and heritability in

the broad sense. This was accomplished using a linear mixed model represented by the equa-

tion: y ¼ m1n þ Xbþ Z1r þ Z2g þ εjk, where y is an vector of phenotypic values, including n
observations, k trials, and j replicates, with n number of plots in each trial; μ is the overall

mean; b is a vector of fixed effects of trials; r is a vector of the random effects of replicates (or

blocks) within trials, with r* N(0, s2
r Ijk), where N is a multivariate normal distribution and s2

r

is the replication variance; g is an vector of random effects for the i-th genotype, with g* N
(0, s2

g Im), where s2
g is the total genetic variance; εjk is an vector of the random effects of the

residuals, with εjk * Nð0; s2
e InÞ, where s2

e is the residual variance. X, Z1 and Z2 are the inci-

dence matrices for their respective effects, with dimensions n x k, n x jk and n x m for trials,

repetitions, and genotypes, respectively; 1n is an vector of ones; and Ijk, Im, In are identity

matrices of their corresponding orders.

Diagnostic plots were generated for each individual trial to identify outliers and assess the

homogeneity of the residuals. This step aimed to ensure the quality and suitability of the data

for subsequent joint analysis of the trials. Genetic parameters were estimated, and the balance

between trials was checked. The number of genotypes evaluated in each year of the VCU trials

varied from 19 in 2013 to 68 in 2016, with an average of 22 agronomically important genotypes

retained for further analysis. Additionally, between five and eight trials were conducted each

year, culminating in a total of 69 trials. For the combined analysis, the trials with the fewest

lost plots for the assessed traits were selected. As a result, the number of selected environments

varied, with 57, 56, 53, and 59 environments chosen for the characteristics FRY, ShY, DRY,

and DMC, respectively. Multiple tools were employed to determine the suitable environments

for the joint analysis.

The broad-sense heritability (Ĥ 2) was calculated using the formula

Ĥ2 ¼ 1 � ½P�EV=ð2� s2
gÞ�, as proposed by [23], where P�EV is the mean variance of the pre-

diction error. The experimental accuracy (Ac) was calculated as Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðP�EV=s2

gÞ
q

fol-

lowing [24]. The coefficient of variation (CV%) was also determined using the formula

CV% ¼ ðs2
e=mÞ x 100, where s2

e is the estimate of the residual standard deviation, and μ is the

overall mean of each trial.

2.3. Joint analysis of phenotypic data

For the joint analysis, the adjusted means of the individual tests were used. The model used for

the joint analysis was: y ¼ m1n þ X1sþ X2b:sþ Z1r:sþ Z2g:sþ εjk, where y is an n x 1 vector

of phenotypic values em s ensaio, onde n =
Ps

i¼1
ni, em que ni é o número de parcelas no

ensaio s; μ is the overall mean; S is an S x 1 vector of the fixed effects of trials; b. s is a ks x 1, vec-

tor of the fixed effects of sets within trials; r. s is a jks x 1 vector of the random effects of repli-

cates within sets within trials, with r. s* Nð0;
Ns

i¼1
Dr:si

N
IjkiÞ; g. s is an ms x 1 vector of the

random effects of genotypes within trials, with distribution g. s* Nð0;G
N

ImÞ; εjk is an n x 1

vector of residuals, with εjk * Nð0;
Ns

i¼1
Dei

N
IniÞ; G is a VCOV matrix for the effect of
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genotypes across trials with dimension s×s [25]. The modeling of matrices G, Dr,s and De was

based on an analytic factor structure (FAk), where k represents the number of multiplicative com-

ponents of the model. The matrices G, Dr,s and De are s×s diagonal VCOV matrices, in which

each trial has a specific and independent variance component for the effects of replicates within

sets and for the residuals, respectively. X1, X2, Z1 and Z2 represent incidence matrices, with dimen-

sions, n x s, n x ks, n x jks and n x ms, respectively, for their respective effects, and 1n is an n x 1

vector of 1s (ones), and Im, Ijkl, and lni are identity matrices with their corresponding orders.

To calculate the overall percentage of genetic variation (�n) explained by the analytic factor

(FAk), the following model was used: �n ¼ 100 X trðLLT
Þ=ðLL

T
þ cÞ, where Λ is the matrix

of factor loadings; λlk is the k factor loading (k = 1,2. . ..k) for environment 1; ψ is a diagonal

matrix with specific variances for each environment, and tr represents the trace of the matrix.

The most parsimonious model was selected based on the AIC information criterion, compar-

ing models from the first order (FA1) to the sixth order (FA6).

To obtain the VCOV matrix of the effect of genotypes within environments, the FAk model

was used, given by: G = (ΛΛT+ψ)�II, where Λ is the l × k matrix of fator loading {λIk}, where

λIk is the kth factor loading (k = 1,2. . ..k) for environment l; ψ is the l × l diagonal matrix with

specific variances for each; II is an identity matrix. ΛΛT represents the common variance

shared across environments; ψ accounts for the unique variances specific to each environment,

and� is the Kronecker product, which is used to extend the matrix dimensions to align with

the structure of the data. By using this model, the combined effects of genotypes and environ-

ments can be effectively partitioned and analyzed, providing insights into the specific and

shared variances that contribute to genotype performance across different environments. This

enhances the precision of genotype evaluation and selection in breeding programs.

To assess the genetic correlation between environments (r�ll), the model (FA) was used with

the terms of the above G matrix as follows: r�ll ¼ COV�ll=
ffiffiffiffiffi
s2
ll

p
xs2

�ll
, where COV�ll is the genetic

covariance between trials l and�l; and s2
ll and s2

�ll
are the genetic variances within environments

l and�l trials, respectively. The factor loadings for the ~f genotypes and the factor loadings for

the ~d environments were calculated based on the work of [9].

2.4. Yield stability in MET trials

Latent regression graphs were constructed for eight genotypes, including four clones in the

final stage of validation, two local varieties, and two checks. These graphs were used to assess

the adaptability and stability of the genotypes across different environments, and the regressed

factor loadings were employed [16,26]. Predicted breeding values, representing additive ran-

dom genetic effects, were added to the average BLUPs of the respective genotypes.

The predicted genetic values reflect the performance of the genotype at a factorial load of a

given environment [12]. In order to maximize the proportion of genetic covariance and

understand the biological significance of the factor loadings of the environments, principal

component analysis (PCA) was conducted. The factors were rotated using the varimax tech-

nique [27] to obtain rotated factor loading estimates. The first factor accounted for most of the

proportion of genetic covariance between environments, while the second factor was orthogo-

nal (no correlation) to the first and explained the next greatest genetic variation between envi-

ronments. This process was continued for subsequent factors [28].

2.5. Variance component estimates

Additionally, variance component estimates for the joint trials were obtained using the given

equation: s2
p ¼ s2

g

� �
þ

s2
gxe
E

� �
þ

s2
e

ER

� �
, where s2

g is the genotypic variance; s2
p is the phenotypic
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variance; s2
gxe is the genotype × environment interaction variance; s2

e is the residual error vari-

ance; E is the number of environments; R is the number of replications. Additional metrics

were calculated as follows: 1) genotypic coefficient of variation: CVG% ¼
ffiffiffiffi
s2
g

p .

X

� �
x100,

where X is the overall mean; 2) coefficient of determination for G×E interaction effects:

r2
i ¼ s

2
gxe=ðs

2
g þ s

2
gxe þ s

2
eÞ; 3) residual coefficient of variation: CVr% ¼

ffiffiffiffi
s2
e

p .

X

� �
x100, 4)

genotype-environment correlation: rge ¼ s2
g=ðs

2
g þ s

2
gxeÞ; 4) CVratio = CVG/CVr; and 5) the

difference between the phenotypic coefficient of variation (CVP) and the genotypic coefficient

of variation (CVG): P−G. These analyses were performed using the gamem_met() function

from the metan package [29].

2.6. Correlations between environmental covariates and FA model factor

loadings

The correlations between environmental covariates and factor loadings from the FA model

provide insights into how specific environmental factors influence the performance of geno-

types. These correlations are essential for understanding the underlying mechanisms driving

G×E interactions and can guide the selection of genotypes better adapted to specific environ-

mental conditions.

Pearson’s correlation was performed to analyze the relationship between the main environmen-

tal covariates influencing the production cycle of cassava, such as maximum temperature (Tmax,

˚C), minimum temperature (Tmin, ˚C), average temperature (Tav, ˚C), rainfall (Rain, mm/day),

relative humidity (Rh, %), wind speed (W/speed, m/s), solar radiation (Sol/rad, MJ/m2/day), and

altitude (m). These covariates were obtained from the meteorological station of Embrapa Mandi-

oca e Fruticultura and the automatic station of Inmet (National Institute of Meteorology). The cor-

relation analysis was performed using the four factors (FA4) obtained from the structure of the

analytical model, following the approach proposed by [30] and described in [12]. Statistical proce-

dures were carried out using the ASReml-R v.3 package [31] within the R4.2.0 software [32].

2.7. Comparative approach of AMMI and GGEbiplot with the FA model

The Additive Main Effects and Multiplicative Interaction (AMMI) analysis and the genotype

main effects plus genotype × environment interaction effects (GGEbiplot) were conducted as

comparative methods to the FA model. The AMMI model [33] used in the analysis is expressed as

follows: yij ¼ mþ bj þ
P
linxinZin�ij, where, yij represents the mean of genotype i in environment

j; μ is the overall mean; βj is the main effect of environment j; n is the singular value; λin, ξin, and

ηin are the singular vectors for genotype and environment for n = 1,2,. . .n = 1, 2,. . . respectively;

and �ij is the residual effect. GGE biplots were generated using the first two symmetrically scaled

Principal Components (PC) to create average tester coordinate and polygon view biplots. For the

GGE model, the equation used is: yij ¼ mþ ai þ bj þ Fij, where yij is the mean of genotype i in

environment j, where i = 1. . .g; j = 1. . .e, where g and e are the numbers of genotypes and envi-

ronments, respectively; μ is the overall mean; αi is the main effect of genotype i; βj is the main

effect of environment j;Fij is the interaction effect between genotype i and environment j [34].

3. Results

3.1. Individual and joint analysis of the agronomic trials

S1 Fig presents the estimated genetic parameters for individual trials, showing considerable

variation across the evaluated agronomic traits. The genetic variance (s2
g) was found to be high
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for all traits in all trials. The broad-sense heritability (Ĥ 2) ranged from 0.16 to 0.92 for FRY,

0.15 to 0.93 for ShY, 0.28 to 0.92 for DRY, and 0.01 to 0.96 for DMC. In 70% of the trials, the

heritability (Ĥ 2) surpassed 0.60 for FRY, 0.61 for ShY, 0.61 for DRY, and 0.63 for DMC—val-

ues considered notably high for quantitative traits in cassava clones, according to [35].

Regarding experimental precision, the coefficient of variation (CV%) varied from low

(<10) to high (>30), for different traits. For FRY, the CV% ranged from 6.60% in 2017.ERU.

NH trial to 39.01% in 2020.ERU.NH2B trial. Similarly, for ShY, the CV% varied from 7.84% in

2017.ERU.SA trial to 40.25% in 2013.EC.NH trial. For DRY, the CV% ranged from 6.92% in

2017.ERU.SV trial to 41.78% in 2020.ERU.NH2B trial. In contrast, there was less variation in

CV% for DMC, ranging from 1.34% in 2016.ERU.SA trial to 8.41% in 2020.ERU.UFV trial,

showing high precision. Notably, the 2015.EC.NR trials for FRY, ShY, and DRY (with CV% of

26.12%, 34.25%, and 28.32%, respectively), demonstrated low experimental precision. As a

consequence, this might lead to reduced estimates of H2
c (less than 0.31 in the mentioned

examples).

Based on the correlation analysis of various experimental precision parameters, CV% and

Ĥ2 were the most correlated (r� -0.70) for the four traits (S2 Fig). Correlations for the other

parameters were not significant, except for the correlation between Ĥ 2 and experimental accu-

racy for the DMC trait.

In clonal trials, the average heritability estimates were lower for FRY (Ĥ2 = 0.50), DRY (Ĥ 2

= 0.51), and ShY (Ĥ 2 = 0.54). However, for the DMC variable, the preliminary trial (2020.EP.

GS.RA1) showed the lowest Ĥ2 estimate (0.01), while the advanced and uniform trials, i.e. pre-

launch phase, generally exhibited Ĥ 2 values of 0.70 or higher.

3.2. Interpretation of the factor analytic model

In order to efficiently select genotypes, it’s important to estimate variance components that

account for the genetic and environmental variations in trait expression. Consequently, the

cassava trials were carried out in environments with distinct soil and climatic conditions,

which could result in diverse responses among genotypes, aiming to explore the concept of

specific adaptability and yield stability of genotypes for a particular target region (Table 2). By

joint variance analysis, the results showed high environmental variance for ShY and greater

genetic variation for DRY. Additionally, significant G×E interactions were observed for all

traits (S3 Fig). The effect of genotypes, environments, and the G×E was highly significant

(p<0.001) for all traits based on the maximum likelihood ratio (LTR) test. This significance

indicates that the responses of these factors are not uniform, and the average performance of

the genotypes varies across different environments. As a result, the ranking of the genotypes

changed depending on the specific environmental conditions, emphasizing the importance of

carefully analyzing and decomposing the G×E interaction. Failing to account for these interac-

tions could introduce bias in selecting superior genotypes and predicting genetic gains (S2

Table). Therefore, a deeper understanding of G×E is essential to improve selection strategies

and recommend genotypes that are both adaptable and stable across target environments.

In order to grasp the intricacies of G×E interactions, we employed the FA model frame-

work. This model effectively breaks down the G×E variation into latent factors representing

both genotype and environmental variability. These factors are empirically dependent on the

richness of available diversity data, as highlighted in S4 Fig.

The criteria used for selecting the appropriate number of analytic factors in the variance

and covariance models indicated that the FA4 model had the lowest AIC (Akaike Information

Criterion) for all analyzed traits. This model was considered the most parsimonious, providing

PLOS ONE G×E interaction in cassava via analytic factor

PLOS ONE | https://doi.org/10.1371/journal.pone.0315370 December 9, 2024 9 / 37

https://doi.org/10.1371/journal.pone.0315370


the best fit with the lowest number of estimated parameters (variance-covariance compo-

nents). The total number of parameters ranged from 233 for DRY to 253 for DMC, taking into

account VCOV structures for the estimated G matrix, to elucidate the genetic variation in the

dataset (Table 3). Furthermore, the relationship between the last logREML (REML log-likeli-

hood) and the chosen FA4 model was above 90% for all variables, indicating a good fit and

precision.

The first four factors of FA4, were responsible for R2 > 87% of the observed genetic vari-

ance, making it possible identify approximately 25 environments with high loadings across the

four traits. For example, for FRY, the first factor had loadings ranging from -1.74 (2021.EC.

GS.UFRB) to 16.53 (2020.ERU.UFV). Considering loadings over 5.0, twelve environments

were represented (including three clonal trials, two preliminary trials, one advanced trial, and

six uniform trials). The second factor had two environments with loadings > 5.0 (not present

in factor 1), being them 2018.ERU.RA1 and 2021.ERU.ALC. The third factor had five environ-

ments, and the fourth factor had six environments, all with negative loadings. Similar trends

were observed for ShY, with approximately five environments in each factor and loadings

ranging from -1.58 (2021.EP.WX.RA1) to 13.25 (2013.EC.NH).

3.3. Variance components

The genetic parameters estimated in the joint trials indicate the extent of genetic progress

achieved through the breeding process. Therefore, the values suggested that most traits exhib-

ited higher CVr compared to CVg, implying that the phenotypic variance is more influenced

by unknown sources of variability, which could be micro and macroenvironmental differ-

ences, rather than genetic correlations. However, DMC displayed smaller variations and a

CVg/CVr ratio of 1.33, indicating it is more responsive to selection and genetic gain [S3

Table]. The CVr values ranged from 23.84% for ShY to 3.14% for DMC, while the CVg ranged

Table 3. Total number of parameters (variance-covariance components—NP), Akaike Information Criterion (AIC) and log-likelihood REML (logREML) of the var-

iance and covariance models (VCOV) based on the estimated G matrix in the joint analysis of environments.

Fresh root yield Shoot yield

Model NP AIC logREML Model NP AIC logREML

FA1 114 2969.65 -1370.83 FA1 112 2897.23 -1336.61

FA2 160 2973.85 -1326.93 FA2 155 2847.66 -1268.83

FA3 201 2939.60 -1268.80 FA3 200 2813.94 -1206.97
*FA4 247 2894.00 -1200.00 FA4 242 2782.27 -1149.14

FA5 332 2986.08 -1161.04 FA5 326 2855.00 -1101.50

OneStage 60 12389.10 -6134.54 OneStage 59 11900.12 -5891.06

rFA4M 0.96 rFA4M 0.97

Dry root yield Dry matter content

Model NP AIC logREML Model NP AIC logREML

FA1 106 1403.20 -595.60 FA1 118 1027.04 -395.52

FA2 147 1385.43 -545.71 FA2 159 997.40 -339.70

FA3 192 1367.67 -491.84 FA3 207 1000.80 -293.40

FA4 233 1361.68 -447.84 FA4 253 985.22 -239.61

FA5 308 1422.78 -403.39 FA5 344 1074.14 -193.07

FA6 356 1393.97 -340.99 OneStage 62 4138.70 -2007.35

rFA4M 0.97 rFA4M 0.91

FA (k: analytic factor for the model of order k; * Chosen model based on the lowest AIC values (in bold).

https://doi.org/10.1371/journal.pone.0315370.t003
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from 19.14% for FRY to 4.20% for DMC. The broad-sense heritability (Ĥ 2 ranged from 0.15

for ShY to 0.31 for DMC, indicating a significant environmental effect on root yield and qual-

ity traits.

In an exploratory analysis, it was observed that the average in FRY ranged from 11.71 t ha-1

(2016.ERU.SA) to 38.78 t ha-1 (2020.ERU.UFV), with an overall average of 24.14 t ha-1. The

genotype BR11-34-69 had the highest overall average for this trait (33.65 t ha-1), which is well

above the national average of 15.0 t ha-1 [36]. For ShY, the range was from 10.39 t ha-1 (2016.

ERU.SA) to 45.53 t ha-1 (2021.ERU.ITAM), with an overall average of 21.40 t ha-1. The geno-

type BRS Poti Branca had the highest overall average (22.86 t ha-1). For DRY, the variation ran-

ged from 3.50 t ha-1 (2016.ERU.SA) to 12.56 t ha-1 (2021.ERU.NH4), with an overall average of

7.61 t ha-1. The genotype BR11-34-41 had the highest overall average (9.36 t ha-1). The DMC

trait showed the least variation, ranging from 30.79% (2021.ERU.AL) to 38.26% (2019.ERU.

NR), with an overall average of 35.63% across the trials. The genotype BRS Novo Horizonte

stood out with an overall average of 38.0% (S5 Fig).

3.4. Correlations among the agronomic trials

The analysis of correlations using the analytic factor (FAk) demonstrated significant variation

in the magnitude and direction of trials associations for all traits (Figs 1–4), as indicated by the

decomposition of G×E by the FA model. The correlations also highlighted robust relationships

between trials, even when conducted across different years (2013 to 2021), underscoring the

necessity of utilizing the FA model for such datasets. For instance, comparing field trials like

2013.EC.NH and 2021.ERU.AL displayed correlations exceeding 90% for FRY and ShY. Simi-

larly, trials such as 2015.EC.NR with 2021.EA.NH exhibited strong correlations for DRY and

DMC.

For FRY, the majority of correlations (69.87%) were positive and significant (ranging from

0.25 to 0.99), indicating a low to no difference in genotype performance across environments.

Only a small proportion (11.02%) of correlations were negative and significant (ranging from

-0.26 to -0.82). Generally, genetic correlations between 0< r < 0.20 imply a strong crossover

G×E, meaning the variance of the interaction is so high that it surpasses all major genetic

effects, altering the genotype rankings across environments. This phenomenon was observed

in 15.16% of the environmental correlations for FRY, ranging from -0.20 in the environments

2020.ERU.UFV and 2018.ERU.PP to 0.20 between 2021.EA.GS.RA1 and 2017.ERU.SA. Con-

versely, when genetic correlations fall within the range of 0.20 < r < 0.80, it suggests the pres-

ence of non-crossover G×E interactions, signifying that the variance attributed to the G×E

interaction is of lesser significance. Correlations of such magnitude were notably observed in

trials such as 2016.EC.NH and 2014.EP.NH, where a correlation coefficient of r = 0.50 was

observed for the trait FRY.

For ShY, there were fewer pairs of environments with negative genetic correlations com-

pared to FRY. Instead, there was a high concentration of average genetic correlations, indicat-

ing that the variance of the G×E interaction is not as significant, thereby altering the

quantitative difference among genotypes and some of the rankings among environments. For

example, the correlation of r = -0.50 between 2020.ERU.GM and 2013.EC.NH demonstrated a

moderate negative relationship between these environments.

Finally, when r> 0.80, noncrossover G×E interactions predominate, indicating minimal

variance in the interaction as major genetic effects explain a substantial portion of the genetic

variability. Consequently, there is little to no change in genotype classification among environ-

ments, given that major genetic effects predominantly contribute to the genetic variability

(observed in 34.96% of the evaluated environments). For instance, in the case of FRY, a
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positive correlation of 0.99 between 2021.EA.GS.UFRB and 2021.EA.GS.AL suggests a high

level of genotype stability between these environments.

For DRY, the negative environmental correlations ranged from r = -0.01 (2021.ERU.

ALC × 2021.ERU.AL) to -0.76 (2021.ERU.NH4 × 2020.ERU.NH2B), with significance

observed in 4.78% of the negative genetic correlations between environments. There was a per-

fect correlation between 2020.EA.RA1 and 2015.EC.NR, and a correlation of 0.0 between

Fig 1. Estimated pairwise genetic correlations between pairs of environments for fresh root yield (FRY) across 57 trials. The circles correspond to the

magnitude (size) and direction (color) of genetic correlations between environments, respectively.

https://doi.org/10.1371/journal.pone.0315370.g001
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2020.EP.GS.RA1 and 2018.ERU.RA1. The positive and significant correlations were observed

in 71.22% of the correlations analyzed (Fig 3).

Regarding DMC, there was a high concentration of positive and significant genetic correla-

tions between the tested pairs of environments, accounting for 73.29% of the correlations.

There was also a significant proportion of high correlations. Only 4.5% of the correlations

were below 0.20 (Fig 4). The negative environmental correlations ranged from -0.01 between

2020.ERU.NH2B and 2018.ERU.PP to -0.95 between 2021.ERU.AL and 2020.EP.GS.RA1, with

Fig 2. Estimated pairwise genetic correlations between pairs of environments for shoot yield (ShY) across 56 trials. Circles correspond to the magnitude

(size) and direction (color) of genetic correlations between environments, respectively.

https://doi.org/10.1371/journal.pone.0315370.g002
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only 2.92% of them being significant. The positive correlations varied from 0.0 between 2020.

ERU.NH2A and 2014.EP.NH to 1.0 between 2020.EA.RA1 and 2015.EC.NR, with 85.35% of

them being significant.

3.5. Stability of cassava genotypes for fresh root yield

The latent regression plots based on the predicted genetic values (Y coordinate) regressed

from the environmental loadings (X coordinate) obtained from the FA4 model were used to

Fig 3. Estimated pairwise genetic correlations between pairs of environments for dry root yield (DRY) across 53 trials. Circles correspond to the

magnitude (size) and direction (color) of genetic correlations between environments, respectively.

https://doi.org/10.1371/journal.pone.0315370.g003
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assess the magnitude of G×E (or stability) for eight genotypes evaluated in at least 50% of the

environments. These genotypes were selected based on their predicted mean agronomic per-

formance and importance for the cassava breeding program. They are BR11-34-41, BR11-34-

45, BR11-34-64, BR11-34-69, BRS Novo Horizonte, BRS Poti Branca, Cigana Preta, and Cor-

rente. The analysis focused on four agronomic traits: FRY, ShY, DRY, and DMC. The factors

of the FA4 model collectively explained between 87.31% (DRY) and 95.52% (DMC) of the pro-

portion of the genetic variance of the observed G×E.

Fig 4. Estimated pairwise genetic correlations between pairs of environments for cassava dry matter content in the roots (DMC) across 59 trials, circles

correspond to magnitude (size) and direction (color) of genetic correlations between environments, respectively.

https://doi.org/10.1371/journal.pone.0315370.g004
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The regression slope (β1) indicates the sensibility and possible causality among the geno-

type’s sensibility and the factor’s signal. A high and positive slope indicates that the genotype is

more responsive to environmental improvements, resulting in higher predicted values in envi-

ronments with higher factor loadings. This suggests that the genotype is well adapted to such

environments, as indicated by a higher angular coefficient [S4 Table]. In our analysis, the esti-

mated environmental loadings for the first factor are mostly positive, with only five exceptions.

Therefore, positive slopes for this factor are desirable.

For FRY, the genotypes BR11-34-69 and BRS Poti Branca showed the highest responsive-

ness to improved environments, with β1 values of 1.49 and 1.52, in the first and second FA,

respectively [Fig 5]. These genotypes are recommended for environments with the highest

Fig 5. Latent regression plots for fresh root yield (FRY) for: A) first analytic factor; B) second analytic factor; C) third analytic factor and D) fourth analytic

factor. The solid and empty circles correspond to the predicted genetic values of the genotypes at tested and untested locations, respectively. The solid red line

and gray tone correspond to the latent regression line at the 95% confidence interval, respectively. In parentheses the proportion of the genetic variance

explained for each factor.

https://doi.org/10.1371/journal.pone.0315370.g005
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factorial loadings, ranging from 5.02 (2020.EA.RA1) to 16.53 (2020.ERU.UFV) for the factor 1,

and two environments with 5.28 (2021.ERU.ALC and 2018.ERU.RA1) for the factor 2. The

average FRY in these environments was 23.0 t ha-1 (S5 Fig). Genotypes with regression line

slopes (β1) close to zero are considered more stable, even in the face of environmental

improvements. For the set of environments related to the first factor, the genotypes BR11-34-

45, BR11-34-64, and BRS Novo Horizonte, were identified as the most stable for FRY. To the

second factor, we can highlight the genotypes BR11-34-69, BRS Novo Horizonte, and Cor-

rente, exhibiting β1 less than 1 to FRY (with positive loadings).

In the third factor, the genotypes BR11-34-69 and Corrente exhibited higher responsiveness

to the corresponding environments, while BR11-34-41 showed responsiveness in the opposite

direction for the fourth factor. Conversely, for the set of environments associated with the

third factor, the most stable genotypes were BR11-34-41 and Cigana Preta with β1 values equal

to 0.35 and -0.37, respectively. For the fourth factor, BRS Poti Branca with β1 = 0.09 was identi-

fied as the most stable genotype, to these environments. These genotypes can be recommended

for environments with specific loadings, such as six environments with loadings ranging from

6.26 (2021.EA.RA1) to 9.71 (2019.EP.NH) in the third factor, exhibiting an average FRY of

27.76 t ha-1. Additionally, seven environments in the fourth factor, with values between -5.07

(2016.EA.SA) and -8.9 (2021.ERU.ITAM), were also identified, demonstrating changes in the

performance of genotypes between environments, with an average FRY of 25.31 t ha-1.

The change in the slope of the regression line and the dispersion of environments along the

regression line for the evaluated clones provide insights into the genotype’s response in differ-

ent environments for FRY (Fig 5). For example, the clone BR11-34-69 exhibited a positive and

high magnitude slope, indicating a positive correlation between FRY and FA1 for the environ-

ments associated with the first factor, consistent with its higher performance. However, for the

set of environments in the fourth factor, BR11-34-69 showed no change in classification due to

its high stability. On the other hand, BR11-34-41 exhibited less responsiveness, as indicated by

the negative slope for environments in factors 1 and 4, as well as greater dispersion along the

regression line for FA3. However, there was a positive and low magnitude slope for environ-

ments in the second and third factors, indicating a positive response and suggesting stable per-

formance of BR11-34-41.

3.6. Stability of cassava genotypes for shoot yield

Regarding the trait ShY, the analysis identified two new genotypes, for FA1, in which BR11-34-

41 and BR11-34-69, as the most responsive to environmental improvement. The FA1 explained

38.05% of the genetic variance. These genotypes exhibited β1 values of 1.48 and 2.05, respec-

tively. Additionally, BRS Poti Branca showed a high responsiveness to environmental improve-

ment (β1 = 2.55) for the second factor (FA2), which accounted for 25.29% of the genetic

variance. Collectively, BR11-34-41, BR11-34-64, BR11-34-69, and Cigana Preta proved to be the

most responsive and adapted genotypes for the environments influenced by the third factor

(17.86%), with β1 values of 1.91, 1.65, 1.52, and 1.35, respectively. In the case of the fourth factor,

Corrente (β1 = 2.15) and BR11-34-69 (β1 = -2.85) exhibited hight and contrasting responsive-

ness. Therefore, the BR11-34-69 genotype could be useful for characterizing environments with

extreme positive and negative loadings for the first and fourth factors affecting ShY.

In general, the genotypes BRS Novo Horizonte, BRS Poti Branca, and Cigana Preta demon-

strated similar responses to the environmental factors (β1ffi 0). Among them, only BRS Poti

Branca displayed consistent behavior for both the first and third factors (β1 = 0.23 and 0.24,

respectively). BRS Novo Horizonte, due to its similar response across a wide range of environ-

ments, also exhibited values close to zero (β1 = 0.26) for the fourth factor.
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The first factor represented environments with environmental loads ranging from 5.95

(2021.ERU.RIOS) to 13.25 (2013.EC.NH), while the second factor encompassed loads from

4.99 (2021.ERU.ALC) to 9.33 (2019.ERU.M.UFRB), with shoot yield exceeding 23 t ha-1 (S4

Fig). The third factor comprised seven environments with loads between 6.31 (2015.EA.NH)

and 10.43 (2016.EC.NH), exhibiting an average Shy of 29.18 t ha-1. Similarly, the fourth factor

consisted of six environments with loads ranging from -6.43 (2013.EC.NH) to 8.22 (2019.

ERU.NH), and an average ShY of 22.80 t ha-1.

Regarding the regression analysis, the genotypes BR11-34-41, BR11-34-45, and BR11-34-69

displayed positive and upward slopes for the loadings of the first, second, and third factor envi-

ronments, respectively. Conversely, Corrente variety exhibited a negative slope in the first

three factors but displayed favorable performance in the fourth factor. BRS Novo Horizonte

displayed a high and positive β1 for environments grouped in the first factor, indicating its

greater responsiveness to these environments. However, the same variety exhibited a low β1

for environments grouped in the other three factors, indicating high yield stability (with a low

magnitude of the regression line) across environments influenced by these three factors

(Fig 6).

Fig 6. Latent regression plots for shoot yield (ShY) for: A) first analytic factor; B) second analytic factor; C) third analytic factor and D) fourth analytic factor.

The solid and empty circles correspond to the predicted genetic values of the genotypes at tested and untested locations, respectively. The solid red line and

gray tone correspond to the latent regression line at the 95% confidence interval, respectively. In parentheses the proportion of the genetic variance explained

for each factor.

https://doi.org/10.1371/journal.pone.0315370.g006
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3.7. Stability of cassava genotypes for dry root yield

Based on the FA4 model, which the first factor explains 38.34% of the genetic variance, the

genotypes BR11-34-69 and BR11-34-41 exhibited a high level of responsiveness to DRY (β₁ =

1.61 and 1.30, respectively). Conversely, the genotypes Cigana Preta and Corrente displayed

poor agronomic performance under improved environmental conditions (β₁ = -1.32 and

-1.92, respectively). Furthermore, BR11-34-45 and Corrente demonstrated significant respon-

siveness to the second and fourth factors (β₁ = 1.41 and 2.30, respectively). Notably, the geno-

type BR11-34-41 exhibited β₁< 1 (but positive) across the second to fourth factors, indicating

considerable stability in at least 37.7% of the environments categorized within these factors

(with loadings >1.5) (S4 Fig).

BR11-34-69 and BRS Poti Branca exhibited high stability in factors 4 and 1 (β₁ = 0.08 and

0.32, respectively). Conversely, BRS Novo Horizonte displayed greater stability in the first two

factors (β₁ = -0.19 and -0.66), while BRS Poti Branca showed stability primarily in the third

and fourth factors (β₁ = -0.32 and -0.55).

Among the identified environments with high environmental loadings (>1.5), 25 stood

out, particularly 2019.ERU.M.UFRB (2.67) and 2019.EC.GS.UFRB (2.46), indicating relatively

consistent edaphoclimatic conditions and a phenotypic mean above 7.0 t ha-1 for the same

year and location.

Different cassava genotypes exhibited varied responses in terms of both direction and mag-

nitude of regression. For instance, four new genotypes—BR11-34-41, BR11-34-45, BR11-34-

64, and BR11-34-69—showed high responsiveness with a positive slope in environments asso-

ciated with the first, second, and fourth factors, while the third factor environments displayed

low regression line dispersion for these genotypes. Conversely, BRS Poti Branca and Cigana

Preta exhibited a negative slope in three out of the four factors, while BRS Novo Horizonte

demonstrated a high slope in fourth-factor environments and displayed stability in third-factor

environments, along with notable dispersion across the first three factors (Fig 7).

3.8. Stability of cassava genotypes for dry matter content in roots

The trait DMC exhibited significant variability in responsiveness to the environment, with β₁
ranging from -2.31 to 0.01. Although most genotypes displayed a negative angular coefficient

for factors 1 and 2, indicating a reduction in DMC in environments with high positive load-

ings. However, BRS Novo Horizonte demonstrated responsiveness to environmental improve-

ment in FA1 and FA3 environments (β1 > 1). Moreover, BRS Novo Horizonte maintained a

relatively stable ranking across 29 environments of FA1 with positive loadings, ranging from

1.03 (2021.EP.WX.RA1) to 2.81 (2021.EA.GS.AL). Lower-magnitude loadings suggest less

environmental variation for DMC, which is supported by lower heterogeneity of variance

among environments, ranging from 7.99 (2021.EA.GS.AL) to 0.01 (2020.EP.GS.RA1), with a

phenotypic environmental mean of 35.54% (S4 Fig). In contrast, the environmental variance

heterogeneity for FRY ranged from 99.59 (2020.ERU.UFV) to 8.96 (2021.EA.GS.AL).

Six out of the eight genotypes exhibited high stability for DMC in at least three out of the

four FAs, across more than 50% of the evaluated environments. Examples include the geno-

types BR11-34-41 and BR11-34-45, as well as the varieties BRS Poti Branca, Corrente, and

Cigana Preta (with β1 ~ 0.43). Generally, there was significant variation in the direction and

magnitude of the regression among the genotypes across the evaluated environments. How-

ever, BRS Novo Horizonte and Corrente demonstrated higher responsiveness to FA1 environ-

ments, while the others displayed less responsiveness to environmental improvement across

most FAs (Fig 8).
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In terms of biological responses, the biplot analysis revealed several correlated environ-

ments for the four agronomic traits. For instance, in relation to FRY, trials originating from

NH, UFRB, and UFV environments generally exhibited slightly higher yield, with higher mag-

nitudes of predicted genetic values and higher environmental loadings in FA1 and FA3

(> 50%).

For both DRY and DMC, there was a concentration of high and positive loadings in FA1

and FA2, particularly in environments such as NH, ITAM, NR, and RA1. Additionally, for

DMC, environments AL, NH, UFRB, and RA1 displayed positive loadings in FA1 and FA3.

Analyzing the dispersion of environments in the regression graph, it was observed that

environments RA2 and AL demonstrated low-magnitude dispersion (stability) along the

regression line across all four factors for FRY, while for ShY, this behavior was observed in five

other environments (GA, GM, NR, PP, SA). For both DRY and DMC, the most stable environ-

ments were RA2, AL, ALC, and GM, with a more uniform distribution of predicted genetic

values along the regression line. These results reinforce the factor analytical model’s ability to

capture the heterogeneity of variance across environments [26].

Fig 7. Latent regression plots for dry root yield [DRY] for: A] first analytic factor; B] second analytic factor; C] third analytic factor and D] fourth analytic

factor. The solid and empty circles correspond to the predicted genetic values of the genotypes at tested and untested locations, respectively. The solid red line

and gray tone correspond to the latent regression line at the 95% confidence interval, respectively. In parentheses the proportion of the genetic variance

explained for each factor.

https://doi.org/10.1371/journal.pone.0315370.g007
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3.9. Correlation between environmental loads and climate variables

Table 4 presents the Pearson’s correlation between climate variables and environmental loads

for the FA4 model, aiming to evaluate the G×E and its influence on genotype performance.

The analysis revealed distinct responses of the genotypes for each trait examined. In terms of

FRY, the most important environmental covariates explaining the G×E effect and the variation

trend were rainfall (Rain, mm day-1), ALT (m), and Sol/rad (MJ/m2 day-1). These variables dis-

played a positive correlation with environments grouped in the first factor (0.58, 0.55, and

0.32, respectively) and a negative correlation with environments in the second factor (-0.29 for

Rain).

For ShY, the only significant correlation was observed with environments in the second fac-

tor and Tav (average temperature) with a correlation coefficient of 0.28. Regarding DRY,

Fig 8. Latent regression plots for dry matter content [DMC] for: A] first analytic factor; B] second analytic factor; C] third analytic factor and D] fourth

analytic factor. The solid and empty circles correspond to the predicted genetic values of the genotypes at tested and untested locations, respectively. The solid

red line and gray tone correspond to the latent regression line at the 95% confidence interval, respectively. In parentheses the proportion of the genetic variance

explained for each factor.

https://doi.org/10.1371/journal.pone.0315370.g008
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significant correlations were found for climatic variables Rh (%) with a negative correlation

(-0.31) and W/speed (wind speed) with a negative correlation (-0.32) in environments of the

first and second factors, respectively. However, for environments in the second factor, a posi-

tive and significant correlation was observed with the Rain variable (0.28).

For DMC, there were no significant correlations between climatic variables and environ-

ments grouped in the first and second analytic factors. However, a positive correlation was

identified between the third factor and Tmax (maximum temperature) with a correlation coef-

ficient of 0.26, while a negative correlation was found between the fourth factor and the same

variable (-0.32). Additionally, Tmin (minimum temperature) showed a positive correlation

with environments in the fourth analytic factor (0.30). Overall, temperature and precipitation

variables had the most significant effect on the G×E in the first and second factor environ-

ments, while temperature alone contributed to explaining performance differences of clones in

the third and fourth factor environments for the four analyzed productive traits.

3.10. Comparative analysis of cassava stability for dry root yield: FA vs.

AMMI vs. GGE Models

To compare the stability and adaptability of cassava genotypes, we focused exclusively on the

most important agronomic trait in selection, namely dry root yield (DRY). The FA4 model

explained ~87% of the variance, while the application of the AMMI model for dissecting G×E

interactions (S5 Table) revealed that the first four terms of AMMI were significant, elucidating

49.3% of the G×E. Additionally, GGE biplot analysis of cassava genotypes unveiled that the

first two principal components explained 69.06% of the total G×E variance (S7 Fig) for this

same trait.

Table 4. Pearson’s correlation coefficient between the environmental covariates and the environmental loadings of the FA4 model on 22 cassava genotypes in 55

field trials.

Fresh root yield Shoot yield

Variables FA1 FA2 FA3 FA4 Variables FA1 FA2 FA3 FA4

Maximum temperature -0.09 -0.05 0.09 -0.10 Maximum temperature 0.17 0.05 0.08 -0.05

Minimum temperature -0.24 0.16 0.12 0.12 Minimum temperature -0.18 0.20 -0.14 0.05

Average temperature -0.23 0.12 0.19 0.08 Average temperature -0.07 0.28* -0.10 0.02

Rainfall 0.58*** -0.29* -0.20 0.15 Rainfall 0.23 0.00 0.18 -0.25

Relative humidity 0.01 -0.12 -0.15 0.18 Relative humidity -0.05 -0.10 0.01 0.04

Wind speed 0.03 0.19 -0.01 0.22 Wind speed 0.06 0.21 -0.06 0.09

Solar radiation 0.32* 0.07 0.01 -0.14 Solar radiation -0.01 0.08 0.02 -0.10

Altitude 0.55*** -0.14 -0.01 0.15 Altitude 0.01 0.05 -0.03 0.00

Dry root yield Dry matter content

Variables FA1 FA2 FA3 FA4 Variables FA1 FA2 FA3 FA4

Maximum temperature 0.12 0.11 0.12 0.04 Maximum temperature 0.23 0.17 0.26* -0.32*
Minimum temperature -0.14 -0.26 -0.06 0.00 Minimum temperature -0.10 -0.18 -0.14 0.30*
Average temperature -0.04 -0.19 0.02 0.03 Average temperature 0.05 -0.06 -0.03 0.10

Rainfall 0.07 0.28* 0.04 -0.01 Rainfall -0.11 0.07 -0.01 0.01

Relative humidity -0.31* -0.12 -0.13 0.01 Relative humidity -0.16 -0.02 -0.01 0.13

Wind speed -0.03 -0.32* -0.15 -0.13 Wind speed 0.19 0.10 0.01 0.03

Solar radiation 0.26 0.12 0.15 0.09 Solar radiation 0.19 0.12 0.06 0.06

Altitude 0.03 0.03 -0.07 -0.23 Altitude -0.01 0.21 0.06 -0.13

*; **; *** significant at p<0.05, 0.01 and 0.001% respectively; *in bold are the significant correlations for each environmental covariate for the four analytic factor

models; FA = analytic factor for the model of order 4.

https://doi.org/10.1371/journal.pone.0315370.t004
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In general, the AMMI model with the first and second multiplicative terms aptly cross-vali-

dated yield variation explained by G×E (S6 Fig). Genotypes with larger IPCA1 scores, regard-

less of positive or negative signs, exhibited higher interactions (unstable), while those with

IPCA1 scores closer to zero were considered stable. Thus, genotypes BR12-107-002, BR11-24-

156, Vassoura Preta, and BRS Verdinha displayed relatively smaller IPCA1 scores for DRY,

indicative of stability and broader adaptation, whereas BRS Novo Horizonte, Corrente, Euca-

lipto, and BRS Gema de Ovo demonstrated higher IPCA1 scores (S6 Fig). According to

AMMI’s top three selections, genotypes BR11-24-156, BRS Caipira and Vassoura Preta proved

desirable for both favorable and unfavorable environments, as they include genotypes that

maintain yield stability even with environmental improvements. Conversely, the new geno-

types BR11-34-41, BR11-34-45, BR11-34-64, and BR11-34-69, which have intermediate IPCA1

values, were better suited to favorable conditions. In contrast, BRS Poti Branca, BRS Dourada,

BRS Gema de Ovo, Correntão, and IAC-90 performed well in unfavorable environments. The

use of the AMMI model to select these genotypes in their respective environments underscores

their optimal adaptation.

In the GGE biplot analysis, genotypes BRS Novo Horizonte, BR11-34-41, BR11-34-69,

BR11-34-45, and BR11-34-64 emerged as the highest yielding, while Eucalipto, IAC-90, BRS

Gema de ovo, Cigana Preta, and Correntão were considered the least productive among vertex

genotypes (S7 Fig). The ideal genotype, exhibiting the highest PC1 score (mean performance)

and low G×E, was BRS Tapioqueira, BR11-34-69 and BR11-24-156, making it the most stable

across diverse environments. Furthermore, BRS Caipira, BR11-34-45 and BR11-34-64 geno-

types were closer to the ideal genotype and deemed desirable.

Regarding the FA model, genotypes BR11-34-41 (9.36 t ha-1), BR11-34-69 (9.32 t ha-1), BRS

Novo Horizonte (9.23 t ha-1), and BR11-34-45 (9.17 t ha-1) exhibited the highest overall perfor-

mance for DRY. In contrast, genotypes Corrente and BRS Poti Branca showed the lowest aver-

age performance for this trait, specifically 7.14 t ha-1 and 7.52 t ha-1, respectively.

Line regression slopes close to zero are typical of genotypes with stable yields or minimal

variation across environments, indicating low G×E interaction. The FA model effectively iden-

tified groups of genotypes with these characteristics, as well as those demonstrating greater

adaptability to specific environments based on their responses to changes in factor loadings.

For example, genotype BR11-34-41 consistently showed a positive β₁< 1 across the second to

fourth factors, signifying significant stability in at least 37.7% of environments categorized

within these factors (with loadings > 1.5) (Figs 6 and S4). Additionally, genotypes BRS Poti

Branca, BRS Novo Horizonte, BR11-34-69, and BR11-34-64 (0.08< β₁< 0.68) exhibited high

yield stability across a wide range of both favorable and unfavorable environments. Con-

versely, a positive β₁> 1 suggests genotypes that are more responsive to environmental

changes. Genotypes BR11-34-45 and Corrente demonstrated greater adaptation to environ-

ments with positive loadings for FA2 and FA4, respectively. However, these genotypes showed

less responsiveness to environmental improvements in environments with negative loadings

for these factors.

One advantage of the FA model over GGEbiplot and AMMI is its ability to capture a greater

variance in G×E interaction, allowing for the classification and selection of superior genotypes

based on regression line behavior. For instance, genotypes BR11-34-41 and BR11-34-69 dis-

played an ascending trend across environments grouped by FA1, while genotypes Cigana Preta

and Corrente exhibited a declining trend, indicating unfavorable responses to these environ-

ments. Similar patterns were observed for other traits (FRY, ShY, and DMC), as illustrated in

S6 and S7 Figs.
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4. Discussion

4.1. Parameters and genetic gain in the selection of the best cassava

genotypes

Cassava breeding programs conduct numerous METs annually to capture the diversity of the

target population of environments (TPEs) across various production regions. The primary

objective is to evaluate the performance of cultivars in these environments to meet the diverse

needs of end-users. These needs include cultivars that are more productive, resistant to pests

and diseases, have high nutritional quality, are well-adapted to the target regions, and exhibit

high yield stability. The process of developing new cassava cultivars is lengthy, taking approxi-

mately 10 years, and is significantly influenced by G×E interactions. These interactions are

complicated by increasingly unpredictable soil and climatic conditions, which interact with

the genotype throughout the selection process. Understanding and exploring the nature of

G×E interactions in cassava has been a challenging focus of many studies. In this context, our

study aimed to explore analyses that can enhance the understanding of G×E interactions, with

the goal of optimizing the selection process while considering the practical realities of cassava

breeding programs.

Deciphering the complexities of G×E interactions in cassava breeding has long posed a sig-

nificant challenge for researchers. This challenge is intricately linked to the diverse range of

Testing and Evaluation Platforms (TPEs) [37]. Nevertheless, studies have shed light on the piv-

otal role played by the heterogeneity of genetic variance and covariance in the selection process

by explaining the genetic correlations between trials. This helps capture environment-specific

genetic effects and aids in studying cultivar adaptation and understanding the nature of G×E

interactions [16,28]. Additionally, it is essential to explore the genetic correlations within

METs trials to observe the diversity and connectivity between trials and mega-environments.

These insights are instrumental in refining selection strategies, optimizing experimental

designs, and tailoring cultivar recommendations to specific environments and needs.

The traits FRY, ShY, DRY, and DMC are considered crucial in the development of new cas-

sava cultivars for industrial purposes, but their genetic estimates can be strongly influenced by

the environment, reducing reliability [38]. Our results demonstrate that, in general, the genetic

parameters differed significantly across the individual trials for all traits. For example, DMC

exhibited the greatest amplitude of Ĥ 2, varying from 0.01 in the 2020.EP.GS.RA1 environment

to 0.96 in the 2019.ERU.M.UFRB environment. However, in over 70% of the evaluated trials,

notably high heritabilities (with an average of 0.66) were observed for all traits. According to

[39], understanding heritability estimates can assist breeders in defining selection strategies,

ensuring that genetic information from selected parents is passed on to their progenies

through hybridization, thus allowing for greater genetic gain per selection cycle. On the other

hand, unexplained variance due to G×E reduces heritability and expected genetic gains [40].

The joint analysis of various environments unveiled that Ĥ 2 indicates that the majority of

genetic variability is not linked to the primary genetic effects, considering low values of Ĥ2,

ranging from 0.15 for ShY to 0.31 for DMC. This suggests that factors beyond the main genetic

effects significantly contribute to the observed genetic variability across different environ-

ments. This variation may be attributed to the analysis of genotypes at different stages of the

breeding program, as well as the use of data from experiments with varying plot sizes, number

of repetitions, and different evaluation sites (S3 Table).

The Ĥ 2 estimates for yield in the advanced trials (EA) and uniform trials (ERU) were gener-

ally higher compared to the early-stage trials, such as the clonal trial (EC) and preliminary trial

(EP) (S1 Fig). For instance, the average Ĥ2 for the advanced trials was 0.70, while it was 0.55
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for the preliminary production trials in terms of FRY. Similar trends were observed for other

traits analyzed in individual trials. These results can be explained by the high heterogeneity of

the initial trials in the cassava breeding program, which typically involve a smaller number of

plants [41]. Thus, our findings suggest that advancing clones to trials with a larger number of

plants in experimental plots and a greater number of environments becomes necessary to min-

imize the effects of G×E.

Similar findings were reported by [42] when comparing the genetic parameters obtained

from clonal evaluation trials (CET) and preliminary trials (PYT) for yield in cassava, consider-

ing 23 full-sibling families (F1) and six self-pollinated families (S1). According to the authors,

greater genetic gains were observed in the PYT trials compared to the CET trials. For example,

the heritability increased from 0.30 to 0.88 for FRY and from 0.23 to 0.88 for DRY in both F1

and S1 families. Additionally, the coefficient of residual variation (CVe) was higher in the CET

trials compared to the PYT trials for both FRY and DRY in F1 and S1 families. These results

demonstrate the significant environmental influence in the initial trials.

For quantitative traits, heritability values above 0.40 are considered of medium to high mag-

nitude, indicating easier transfer of quantitative inheritance traits to progenies. In the case of

cassava, previous reports in the literature have shown heritability values ranging from 0.45 to

0.56 for DMC in multi-environment trials [35,38]. For FRY and DRY, heritability values rang-

ing from 0.21 to 0.15 have been reported [43], which is similar to the heritability values

obtained in the present study (0.20 and 0.18 for FRY and DRY, respectively).

Regarding the coefficient of genetic variation (CVg), it was consistently lower than the coef-

ficient of residual variation (CVr<1.0) across the traits evaluated, ranging from 0.76 for ShY

to 0.90 for FRY. This suggests that the variation attributed to genetic factors is lower than the

variation due to environmental factors. Such a scenario indicates that relying solely on the

selection of clones based on a limited number of environments may not be reliable, as the

observed phenotypic variation is predominantly driven by environmental factors rather than

genetic factors. Only DMC exhibited a CVg/CVr ratio greater than 1.0, indicating that the

genetic variation exceeds the residual variation for this trait. This finding suggests that selec-

tion based on DMC could lead to more reliable genetic gains compared to other traits evalu-

ated in the study.

Several studies have demonstrated the predominance of additive genetic effects in the

expression of DMC in cassava [44–46]. Other studies have reported similar s2
g values of 5.26

and below for joint trials in cassava, with average yields ranging from 34.22% to 24.12%, which

is lower than the average yield in the present study (35.63%) [35,47]. These results suggest that

the lower G×E for DMC allows, for maximizing the probability of selecting of more stable

clones for this trait across different years and growing locations.

4.2. Using the FA model to explore G×E interaction in cassava

The analytic factor structure (FAk) is a valuable tool for dealing with unbalanced data and low

connectivity between trials [16]. In the present study, despite genotypes being evaluated in at

least 50% of the environments, the FA4 model explained more than 85% of the genetic variance

for all four traits, indicating that the structure of the G×E interaction was well captured by the

FA model.

METs used to assess G×E are costly because they require conducting trials in different loca-

tions/regions to observe the effects of soil and climate conditions on phenotypic expression.

By exploring genetic correlations between pairs of environments, the FA model helps to mini-

mize the effects resulting from G×E interaction and identify similar and contrasting environ-

ments. As can be seen, there is a high correlation between observed and predicted means in
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untested environments based on the FA model, as indicated by low scatter in the biplot. [48]

reported 85% of genetic variance explained by FA2 when evaluating different levels of unbal-

ance (10%, 30%, and 50%) in maize breeding trials.

These results can be attributed to the predictive ability of the FA model in modeling the var-

iance matrix and genetic covariance pairs (VCOV) of genetic and residual effects across envi-

ronments in METs trials. By considering the information from correlated environments and

the effects of genotypes across trials, the FA model integrates and simplifies the estimation of

environment-specific genetic variance and pairwise covariances. This approach approximates

unstructured VCOV models and reduces the number of estimated parameters. The FA model

also provides estimates of predicted genetic values for missing environments, genotypic scores,

and environmental loadings. It maximizes the common variance among correlated factors by

reducing the variables into a few latent factors that are related to the G×E, even in the presence

of low connectivity between trials [9,26].

The use of the FA model in exploring G×E with historical cassava data is groundbreaking

and opens up new possibilities for analysis, aiding breeders in decision-making regarding the

recommendation of new genotypes and experimental designs. A similar study conducted by

the International Institute of Tropical Agriculture (IITA) in Africa used the FA model to assess

the stability and performance of 96 cassava varieties for fresh root yield across 48 UYT. This

study found that 79.0% of the total genetic variation was captured by the FA3 model [49]. FA
models have been employed by other researchers in clonal propagation species such as euca-

lyptus and some forest species to investigate adaptability and yield stability. All of these studies

demonstrated that models capable of accommodating heterogeneous variances and covari-

ances outperform traditional models, leading to greater genetic gains. By capturing the com-

plexity of G×E interactions, FA models enable more accurate predictions of genotype

performance, especially in environments with diverse conditions, and provide breeders with

more reliable tools for selecting superior genotypes.

Due to the complexity of METs trials, it is crucial to use robust analysis methods that can

handle heterogeneous variances and covariances between environments. Less robust methods

may lead to biased genetic parameter estimates, unstable model fits, and failure to converge. In

the present study, the FA4 model, with an acceptable percentage of variance explained, proved

to be the most parsimonious for all four traits. The model selection criteria, such as AIC, and

the number of estimated parameters (<253.0) were considered, ensuring reliable estimation of

variance parameters. The accuracy of the model (rFA4M) was high (>90%), indicating a good

fit. Similar model selection values favoring the FA4 model were reported in cotton [20].

The loadings of an environmental factor represent the proportion of genetic covariance

between environments explained by that specific factor. This information allows for optimiz-

ing the number of environments in METs trials by selecting environments with high represen-

tativeness and identifying mega-environments based on environmental loadings. For example,

in the case of DMC, the highest loads ranged from 1.03 (2021.EP.WX.RA1) to 2.81 (2021.EA.

GS.AL), with 29 environments exhibiting genetic variance above 64% (FA1].

A similar pattern was observed for the other traits, although with variance values�50%

(FA1). The first factor explained a substantial proportion of the genetic variation in G×E, indi-

cating that the latent regression in the first factor had the greatest impact on the predicted

genetic values of the genotypes. For instance, in the case of FRY, considering the average envi-

ronmental loading [2.97], 40% of the environments exhibited positive loadings above the aver-

age, suggesting the presence of a mega-environment. Clustering these environments is

recommended because there is less G×E, leading to FRY values exceeding 24 t ha-1 in this fac-

tor. Conversely, opposite directions of environmental loadings and genotypic scores demon-

strate the influence of G×E on genotype performance and the clustering of trials based on
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environmental contrasts. High and positive loadings indicate environments with high discrim-

inatory power and the ability to explain most of the observed genetic variation, as exemplified

by 2019.EC.GS.UFRB environment (loadings of 7.48) for ShY. Low loadings, on the other

hand, suggest environments that contribute little to the genetic variance across environments,

as exemplified by 2018.ERU.UFRB environment (loading of 0.35) for the trait DRY.

In cases of positive correlations, the regression line between two hypothetical genotypes

does not cross, and therefore the ranking of genotypes does not change between environments

on that factor, representing an uncrossed G×E. This means that the response of genotypes to

the trait does not vary across environments that are positively correlated with the factor. For

example, genotype BR11-34-69 (-2.84) will exhibit a higher shoot yield response in the envi-

ronment 2021.EP.WX.RA1 (-1.58) with a high loading and the same direction, indicating a

positive correlation. On the other hand, negative loadings suggest heterogeneity of correlations

across environments, indicating a tendency for a crossed G×E. This means that environmental

responses are not equal across environments, resulting in rank shifting and specific adapta-

tions that can be exploited. For example, genotype BR11-34-41 with β1>1 can be recom-

mended for approximately 20 environments in the set of FA1 and FA2 (negatively charged)

environments for FRY.

For environments with positive loadings, genotypes with negative scores tend to exhibit a

reduction in the productive performance. Conversely, genotypes with positive scores, in the

same direction as the environment, will have a favorable performance. For example, in the

case of DRY, genotype BR11-34-41 with β1= 1.30 and the highest environmental load for the

first factor from the environment 2020.ERU.UFV (16.53) both have positive values. This indi-

cates a high agronomic performance of this genotype in that specific environment. However,

for Corrente (β1 = -1.92), there will be a decrease in DRY, given the negative score for this

environment in that specific factor. Conversely, for environment 2021.EC.GS.UFRB (β1 =

-1.74), there will be a higher DRY. A similar pattern can be observed for the other traits.

In the study conducted by [17] on five commercial wheat varieties, the use of latent regres-

sion plots with the FA5 model explained 82% of the genetic variance. The FA1 model exhibited

only positive loadings, suggesting that genotypes with positive slopes (β1) for this factor are

desirable, and the predicted genetic values tend to increase for the set of environments with

high estimated loadings.

4.3. Stability analysis of high-yielding genotypes in multi-environments by

FA, AMMI e GGE

The use of the FA4 model in the cassava breeding program has proven to be highly effective in

capturing a significant portion of the genetic variation for key traits such as FRY, ShY, DRY,

and DMC. With percentages ranging from 87.31% to 95.52%, the model outperformed previ-

ous studies in Pinus species and sorghum, even when dealing with unbalanced data [12,16].

On the other hand, the AMMI and GGE methods captured a smaller proportion of the vari-

ance (~66.01% for four PCs), indicating that the use of models assuming homogeneity of vari-

ance in unbalanced data tends to penalize the main effects and capture more noise. This makes

it more challenging to achieve greater model convergence and consequently reduces the preci-

sion in selection.

Overall, the criteria used for selecting stable and high-yielding genotypes were not consis-

tent across the FA, AMMI, and GGE biplot models. However, the FA model showed superior-

ity, particularly in capturing a larger proportion of the G×E interaction variance, identifying

the degree of genetic connectivity among trials, exhibiting better correlations between trials,

and providing more accurate estimates of genetic parameters such as heritability. These
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advantages enhance confidence in genotype selection across breeding cycles and in identifying

new promising genotypes.

For example, the genotype BR11-34-69, with a β1 = 0.35, showed high FRY (33.65 t ha-1) in

the FA2 environments, while the genotype BR11-34-45, with a β1 = 0.92, demonstrated stable

performance for the trait ShY (25.80 t ha-1) in the same set of environments. However, these

genotypes were identified as having specific adaptability to a different set of environments

than those grouped by FA2 based on the AMMI and GGE methods. Conversely, a positive β1

> 1 suggests genotypes that are more responsive to environmental changes. For instance,

BR11-34-41 and BRS Novo Horizonte displayed 9.36 t ha-1 of DRY and 38.04% of DMC,

respectively, with β1 values of 1.30 and 1.18 for the set of environments in FA1. However, these

genotypes were identified by the AMMI and GGE methods as having specific adaptability

based on IPCA1.

These results suggest that the specific genetic variance for each environment and the differ-

ent paired covariances between environments captured by the FA model allow for better esti-

mation of genetic correlations between environments, leading to a more accurate grouping of

correlated environments [11]. [49] reported that the FA model with the effect of G associated

with G×E is more parsimonious compared to models that separate the genotype effect from

G×E, such as the AMMI model. Additionally, [50] stated that the FA model can have a similar

interpretation to SREG (sites regression-SREG, which is similar to GGE) if the genotype effect

is not separated from the G×E interaction, or it can be similar to AMMI if the genotype effect

is separated from the interaction (G + G×E). [51] observed some similarity between the

AMMI2 and FA2 models. However, our results show that this similarity between models

depends on various factors, including the magnitude of the G×E interaction. When comparing

the predictive ability of the linear-bilinear model and mixed-effects models using the FA

model, [49] found that the predictability of the model improved by up to 5–7% with FA for

models with high complexity G×E and G + G×E effects, as is often the case in most MET trials

in cassava. Thus, the main advantage of the FA model is its parsimony, its ability to accommo-

date heterogeneity of (co)variances, both residual and genotypic, and its capacity to handle

incomplete and unbalanced data in the analyses. By considering genotypes as random effects,

it also allows for the estimation of genetic values of the genotypes, which is essential for

selection.

Thus, the latent regression plots provided valuable information. Genotypes suggested as sta-

ble reflected their response to the environmental covariate across all environments in the fac-

tor, including those that were not tested. These genotypes exhibited yield stability even with

environmental improvements. Their stability is evident as they showed minimal response to

changes in environmental loads, making them suitable for environments with low technologi-

cal levels. On the other hand, the adapted genotypes are recommended for environments with

high technological levels as they responded to increased environmental loads. Overall, the FA
model facilitated a better understanding of the G×E by considering both the performance and

stability of the evaluated genotypes. On the other hand, the GGE biplot model is particularly

effective for visualizing and identifying mega-environments, as well as for selecting representa-

tive and discriminative environments [34,52]. In contrast, AMMI analysis enhances breeders’

ability to identify superior environmental conditions for exploiting specific adaptability, as

well as for selecting and recommending optimal cultivation sites [53]. Depending on the spe-

cific needs and objectives, these methods can be used complementarily, thereby expanding

breeding strategies and enhancing the understanding of the underlying parameters of the G×E

interaction. This complementary use provides a more robust approach to addressing the com-

plexities of genotype-environment interactions and improving crop performance across

diverse conditions.
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4.4. Correlation and identification of environments groups for regionalized

recommendations

The G×E plays a significant role in genotype performance, particularly in the presence of chal-

lenging edaphoclimatic conditions that affect experimental trials. The FA model offers a valu-

able framework to explore the genetic correlations between environments and incorporate this

information into the analysis. By doing so, it becomes possible to assess the effect and contri-

bution of each environment on genotype performance and G×E through covariance, leading

to the identification of specific groups of environments with high connectedness.

Environments that exhibit high environmental loading within each factor generally display

strong correlations with one another, indicating minimal G×E. This demonstrates the effec-

tiveness of factor rotation in grouping environments based on their similarities. Environments

that are close to each other in a biplot tend to elicit similar biological responses among geno-

types in that particular sector [54]. The FA model has been successfully used in maize to iden-

tify subgroups of genotypes/environments without G×E, allowing for the modeling of groups

with consistent associations between environments [55].

High and positive correlations are advantageous in selecting new varieties as they minimize

G×E and indicate the adaptability of genotypes in specific groups of environments, known as

mega-environments. Mega-environments are characterized by homogeneous environmental

conditions and similar performance of genotypes over time [56]. Consequently, environments

with high and significant correlations can be grouped together or even discarded, while new

environments can be included to identify environmental patterns and maximize genetic gains.

The heatmap generated by the FA model represents the pairwise matrix of genetic correla-

tions between environments, revealing the magnitudes and directions of these correlations. In

the present study, the correlations for the four traits ranged from medium to high magnitude.

This indicates that more than 75% of the correlations showed similar performance among

genotypes, suggesting the existence of clones that are adapted to regions with distinct climate

and soil conditions. For example, FRY exhibited consistent genetic responses across most envi-

ronments, except for 2020.ERU.NH2B, 2020.ERU.RA1, and 2021.ERU.NH3, which displayed

high negative and significant correlations with the majority of evaluated environments. This

suggests potential differences in genotype performance based on climatic conditions from one

year to the next, likely influenced by the low and negative loadings (<-5.73) for FA2 and FA3,

indicating the impact of the environmental covariate [Rain] on genotype performance in these

environments.

The observed correlations imply that the influence of crop years (which reflects climatic

variables) on the traits DRY and DMC was less pronounced compared to the effect of locations

(which represents edaphic conditions). This finding aligns with previous research by [17],

indicating that most G×E occurs across different years. However, for FRY and ShY, both year

and site effects were significant, highlighting the complexity of selecting genotypes for these

traits. It is noteworthy that the inclusion of a large number of years (>5 years) in this study,

representing a random sample of regional weather stations, enhances the reliability of predict-

ing environmental effects and facilitates the recommendation of genotypes.

The heterogeneity of variance and the proportion of additive variance strongly depend on

the specific trait and the correlations between environments. In this study, the high proportion

of positive correlations between pairs of environments, combined with the heritability of the

traits, enhances the effectiveness of the FA model in explaining the substantial genetic variance

and identifying superior genotypes and environments with low G×E [57].
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4.5. Environmental variables and their relationship with the G×E

interaction

To enhance the understanding of the G×E and provide more consistent and biologically mean-

ingful results, we employed a comprehensive approach. First, we obtained environmental load-

ings (obtained by the analytic factor structure, FA4) which, on their own, can be challenging to

interpret. To overcome this limitation, we correlated these loadings with potentially informa-

tive environmental covariates. By incorporating edafoclimatic variables, we aimed to discern

the temporal influence of the environment on genotype performance. This allowed us to dif-

ferentiate between the effects of climate, soil, and their interactions, thereby characterizing the

environment by correlating it with environmental loadings [17,30,58]. Indeed, this aspect is

fundamental, given that the influence of climatic seasonality, coupled with the genetic consti-

tution of genotypes across different trials and years, poses challenges in predicting G×E inter-

actions. Therefore, supplementary information about the environments becomes important

[37]. This highlights the necessity of incorporating comprehensive environmental data and

genetic information to enhance the accuracy of genotype-environment interaction assess-

ments, thereby facilitating more informed breeding decisions.

Overall, we found significant correlations, ranging from 0.26 to 0.58, between climate vari-

ables and environmental loads. However, none of the climate variables could account for more

than 58% of the variance in the G×E. These findings suggest, for example, that the FA1 load-

ings capture a significant portion of its variability, hinting at a potential sensitivity to variations

in those factors. In other words, precipitation, solar radiation, and altitude were the environ-

mental covariates that most explained the genetic variability of genotype BR11-34-69 for FRY,

impacting adaptability and stability across the grouped environments related to this factor.

Notably, maximum daily temperature consistently demonstrated a strong association

across all four analytic factors (0.17 to 0.32) for the DMC trait. For instance, the BRS Novo

Horizonte variety exemplifies this relationship. This genotype exhibited higher DMC (38.04%)

and β1 values of 1.18 and 1.30 for FA1 and FA3, respectively, indicating a greater sensitivity to

high temperatures. However, the significance of the correlation FA × environmental covari-

able, was observed primarily for the environments allocated in FA3 and FA4 (~25 environ-

ments). On the other hand, rainfall was the most influential covariate for three analytic factors

(0.15 to 0.58), specifically significant for FA1 and FA2 of the FRY trait. In their analysis, [59]

reported correlations between mean temperature and FA3 loads spanning from -0.28 to 0.65.

This correlation contributed substantially, accounting for 27.8% of the G×E in Picea abies
progenies’ performance. This underscores the significance of environmental covariates in

shaping both the level and pattern of G×E, offering the potential to forecast genotype perfor-

mance by correlating historical climate data with FA.

These findings corroborate the influence of edaphoclimatic conditions on the stratification

of G×E in cassava, making it more predictable. For example, the transition from the dry period

to the onset of rainfall triggers a process of starch reallocation from the roots to support the

growth of the above-ground parts [60]. Conversely, low temperatures and insufficient solar

radiation can hinder vegetative growth, thereby affecting the production of above-ground bio-

mass and consequently starch production [61]. Environments that do not meet these mini-

mum conditions tend to penalize genotypes in terms of productivity and further influence the

G×E. These results underscore the significant impact of reducing essential productive and

quality attributes of cassava roots, leading to a subsequent decline in starch yield.

The identification of climate variables associated with environmental loads in the FA model

provides valuable insights into the factors that influence the classification of genotypes regard-

ing the G×E in cassava. As highlighted by [49], the FA model’s ability to utilize genetic
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correlations between environments enhances predictability by up to 6% compared to models

assuming homogeneity of variance between environments. Predicting the various factors that

impact root yield is essential, as climatic factors strongly influence the goals and outcomes of

breeding programs [60].

Lastly, we emphasize that the utilization of the METs dataset from the cassava breeding pro-

gram, coupled with the analysis of climate variables within the FA model framework, can

greatly assist in identifying genotypes with stability and high performance across diverse envi-

ronments. It can also expand the scope of predicting transient components that influence the

G×E beyond the tested environments. Furthermore, this approach allows for capturing the

repeatability and trends in performance and stability over the years, provided that comprehen-

sive sets of information on environmental covariates from different years and locations are

grouped together to enhance the reliability of studying the G×E for recommending new

genotypes.

4.6. Future prospects

In the context of global warming and climate change, cassava’s role in ensuring food security

becomes increasingly important. Consequently, the prospects for genetic improvement of cas-

sava, particularly through the analysis of adaptability and stability using the multiplicative

mixed model of the analytic factor, are crucial in developing high-performing genotypes for

both tested and untested environments. The METs trials, being highly unbalanced due to the

introduction of new genotypes (uniform and advanced trials) and the removal of low-perform-

ing genotypes, are complex management throughout Brazil.

There are several statistical approaches to explore the GxE interaction. However, models

that use the s×s matrix structure of genetic variance and covariance components among the s
evaluated environments provide a better understanding of the G×E interaction and the genetic

architecture of breeding traits, along with estimates of all genetic environment-environment

correlations. Currently, the most parsimonious approach to modeling the genetic variance-

covariance matrix is based on the FA structure [14,51], which also allows for its extension to

estimate additive and non-additive effects simultaneously [62].

The flexibility in obtaining genetic parameters through the FA method offers various

opportunities to enhance the understanding of the G×E interaction in cassava breeding pro-

grams. With the increasing practical use of genomic selection [20,63] and numerous genome-

wide association studies [64,65], there are predictive advantages in these models when incor-

porating the G×E interaction for quantitative traits. Some examples of this are the studies by

[49], which showed that FA models exhibited up to a 6% advantage in predictive accuracy

compared to models that considered the same variance and correlation between environ-

ments; while [66] demonstrated that genomic selection models that take into account G×E

had greater predictive capacity compared to models that ignore G×E. Therefore, it is intended

to include information from FA models to update genomic prediction models and GWAS

studies incorporating the G×E interaction.

Another avenue for enhancing the study of G×E interaction within cassava breeding pro-

grams is by employing FA models, which offer several potential improvements. One such

enhancement is envirotyping, a method involving detailed environmental characterization to

identify predominant environmental types or existing experimental networks. This enables the

calculation of environmental variance-covariance, facilitating enviromic prediction to forecast

breeding zones for current and future trials [37]. Recently, [67] introduced a novel predictive

breeding approach called GIS-FA. This innovative method integrates geographic information

system (GIS) techniques, FA models, partial least squares regression (PLS), and environmental
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data to predict phenotypic performance in untested environments. GIS-FA allows for the iden-

tification of new breeding scenarios in specific environmental groups, where genotypes dem-

onstrate superior predicted performance, even in locations where they have not been tested.

This approach offers significant advantages over traditional methods such as AMMI and GGE

biplot in studying GxE interactions. Other opportunities for improving this study include

incorporating the pedigree matrix into the FA model, which provides a broader understanding

of genetic effects on agronomic performance. This allows for the identification of the contribu-

tions of dominance and additive effects for target traits in cassava [12,26]. Additionally, to

minimize potential selection bias and integrate knowledge from other fields, it is important to

explore environmental covariates that may help predict the performance of cassava genotypes

in untested environments within MET trials. The goal is for the genetic improvement program

to become increasingly precise, leading to higher genetic gains and providing short- and

medium-term potential. By integrating advanced predictive tools and more comprehensive

data, cassava breeding can achieve greater efficiency and accuracy in selecting superior geno-

types for diverse environments.

Furthermore, by obtaining historical climate data from different regions, it becomes possi-

ble to construct climate indices that aid in predicting the pattern of G×E and genetic values of

untested clones. Our results suggest that incorporating environmental covariates into the FA

model enhances its efficiency in understanding G×E interactions by capturing cross-environ-

mental interactions and explaining a greater proportion of genetic variance. The FA model’s

structure, as demonstrated in this study, emphasizes the importance of precipitation and tem-

perature as key factors directly influencing the G×E. This integrated approach facilitates the

development of effective strategies for cassava breeding programs, ensuring the selection of

genotypes that exhibit enhanced adaptability and stability in varying climatic conditions. In

this regard, the FA model’s structure proves invaluable in guiding cassava improvement pro-

grams, enabling the estimation of reliable and efficient genetic parameters. These innovative

approaches warrant further exploration in future reviews, supported by new regional trial

data.

5. Conclusion

This study reveals significant genetic variance in cassava, even in the analysis of a small num-

ber of genotypes at the final stage of selection. This indicates that productive data surpass

those of local varieties, highlighting the potential for improving cassava yield through genetic

selection. This was achieved by employing a robust environment-specific variance-covariance

structure to ensure stable and convergent fits. To accomplish this, we utilized the analytic fac-

tor FA4, which exhibited the lowest AIC and explained over 87% of the total genetic variance.

The genetic correlations, derived from the analytic factor structure (FA4), indicate distinct pat-

terns of G×E interactions across four agronomic traits, which can guide more effective selec-

tion strategies for high-performing genotypes and the identification of stable, high-yielding

mega-environments.

Additionally, the FA model captured more variance in G×E interactions compared to the

GGE biplot and AMMI models, suggesting superior selection efficiency and genetic gains. The

FA model also allowed us to predict genotype performance in environments where they were

not tested, potentially reducing the costs of future trials. The genotypes BR11-34-69, BR11-34-

45, and BR11-34-64 were identified as the most stable for three important traits, with potential

for release as new cultivars. Another promising genotype, BR11-34-41, showed stable perfor-

mance across multiple environments and demonstrated superior fresh root yield (FRY).
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Furthermore, the relationship between FA₄ and climatic variables revealed that rainfall, alti-

tude, and solar radiation were key factors influencing G×E interactions. Understanding these

environmental covariates can help breeders optimize planting and harvesting schedules, based

on the seasons with the greatest impact on cassava performance. This approach provides valu-

able insights into the complex G×E interactions in cassava, enabling breeders to select geno-

types with better yield stability and adaptability to specific environmental conditions.

Future studies could incorporate the use of advanced envirotyping techniques and GIS-FA

models to further predict genotype performance in untested environments. Additionally,

incorporating pedigree data and exploring other environmental covariates may improve the

precision of genotype predictions. Expanding these models to include long-term climatic data

and exploring additional genetic interactions would refine selection strategies and increase the

accuracy of breeding programs for cassava.
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