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Genetics/ Original Article

Performance of four genomic
selection methods using different
heritability and QTL numbers
Abstract – The objective of this work was to evaluate how heritability and
the number of quantitative trait loci (QTL) controlling the trait can influence
the prediction of genetic value by genomic selection methods. A prediction
equation was established to estimate genetic correlation based on phenotypic
correlation, using an F2 population with 1,000 individuals, simulated in
different scenarios. Heritability (5, 20, 40, 60, 80, and 99%) and QTL
number (60, 120, 180, and 240) varied in each scenario. The following four
genomic selection methods were used in the analyses: ridge-regression best
linear unbiased prediction (RR-BLUP), genomic BLUP (GBLUP), Bayesian
estimation method B (Bayes B), and reproducing kernel Hilbert spaces
regression (RKHS). The phenotypic and genotypic predictive abilities were
calculated for each method, and Tukey’s test was used to compare means.
The effect of heritability and of the number of QTL controlling the trait was
evaluated by the regression analysis. Tukey’s test revealed differences between
the methods, with Bayes B and RR-BLUP being superior to the others in
almost all scenarios. Heritability presents a positive linear relationship with
phenotypic predictive ability and a positive quadratic relationship with
genotypic predictive ability. The number of QTL controlling the trait has no
relationship with the phenotypic and genotypic predictive abilities.

Index terms: accuracy, genome-wide selection, heritability, mixed model, QTL.

Desempenho de quatro métodos de
seleção genômica com uso de diferentes
herdabilidades e números de QTL

Resumo –Oobjetivo deste trabalho foi avaliar como a herdabilidade e o número
de locos de características quantitativas (QTL) que controla a característica
podem influenciar na predição do valor genético por meio de métodos de
seleção genômica. Uma equação de predição foi estabelecida para estimar
a correlação genética baseada na correlação fenotípica, tendo-se utilizado
uma população F2 com 1.000 indivíduos, simulados em diferentes cenários.
A herdabilidade (5, 20, 40, 60, 80 e 99%) e o número de QTL (60, 120, 180
e 240) variaram em cada cenário. Os quatro seguintes métodos de seleção
genômica foram utilizados nas análises: ridge-regression best linear unbiased
prediction (RR-BLUP), BLUP genômico (GBLUP), método bayesiano de
estimação B (Bayes B) e reproducing kernel Hilbert spaces regression
(RKHS). As habilidades preditivas fenotípicas e genotípicas foram calculadas
para cada método, e o teste de Tukey foi utilizado para comparação de médias.
O efeito da herdabilidade e do número de QTL que controla a característica foi
avaliado por análise de regressão. O teste de Tukey revelou diferenças entre
os métodos, sendo que Bayes B e RR-BLUP foram superiores aos demais em
quase todos os cenários. A herdabilidade apresenta relação linear positiva
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com a capacidade preditiva fenotípica e relação quadrática
positiva com a capacidade preditiva genotípica. O número
de QTL controlando a característica não tem relação com a
capacidade preditiva fenotípica e genotípica.

Termos para indexação: precisão, seleção genômica
ampla, herdabilidade, modelo misto, QTL.

Introduction

Until 30 years ago, the selection of superior
genotypes in most plant and animal breeding programs
was based on the visual selection of individuals
(Lichhane et al., 2022). This changed with the advent of
molecular markers, which allowed of the incorporation
of molecular information to improve prediction and
selection accuracy (Lichhane et al., 2022). The first
marker-based methodology used in breeding was the
molecular marker-assisted selection (Xu & Croux,
2008). However, this methodology was useful only for
traits with quantitative trait loci (QTL) of major effect,
being inefficient for traits controlled by minor-effect
genes (Zhong et al., 2009; Song et al., 2023).
With the evolution and the introduction of molecular

markers, such as single nucleotide polymorphisms and
diversity arrays technology, new statistical models,
known as genomic selection models, were established
for the study of the influence of minor-effect genes
(Meuwissen et al., 2001). These models use the effect
of all markers available to estimate the genomic
estimated breeding value (GEBV) of an individual.
The prediction accuracy of these models is

influenced by several factors, such as the heritability
of the trait and the number of genes controlling it
(Ornella et al., 2012; Robert et al., 2022; De Mori &
Ciprinai, 2023). According to Zhong et al. (2009) and
Zargar et al. (2015), in genomic selection methods,
accuracy seems to be inversely related to the number
of QTL. For example, when estimated by Bayesian
methods, accuracy is higher for traits controlled by
fewer major-effect genes. Conversely, in models
based on the best linear unbiased prediction (BLUP),
a better performance is observed for traits controlled
by several minor-effect genes (Meuwissen et al.,
2001; Zhong et al., 2009). Although there are studies
comparing genomic selection methods (Heslot et al.,
2012; Bhering et al., 2015), only a few of them have
taken heritability and the number of QTL controlling
the trait into account (Desta & Ortiz, 2014), whereas

none of them have considered these two factors
simultaneously.
The objective of this work was to evaluate how

heritability and the number of QTL controlling the
trait can influence the prediction of genetic value by
genomic selection methods.

Materials and Methods

For the study, an F2 population was simulated using
the simulation module of the GENES software (Cruz,
2013), which allowed of generating information on the
genome, the genotypes of the parents, the controlled
cross populations, and quantitative trait data. A
genome consisting of 15 linkage groups, similar to
that of a 2n = 2x = 30 diploid species, was simulated.
Each linkage group had 200 cM, with 200 markers per
linkage group, spaced equally at 1 cM, totaling 3,000
markers. The markers were assumed as codominant
and biallelic.
Contrasting homozygote parents were simulated,

i.e., parent 1 was coded as dominant (2), and parent 2
was coded as recessive (0) for all markers. Therefore,
the cross between parent 1 and parent 2 generated
the F1 population with all genes in heterozygosis.
The simulated F2 population was coded with 0, 1,
and 2, where 0 corresponds to recessive homozygote
individuals, 1 to heterozygote individuals, and 2 to
homozygote individuals for a given locus.
The F2 population was composed of 1,000

individuals, generated from the cross-selfing of
individuals of the F1 population. In this process,
each individual of the F1 population produced 5,000
gametes, and, when 2 of these gametes met at random,
the first individual of the F2 population was generated.
This process was repeated until all individuals of each
population were formed.
Traits controlled by different QTL numbers (60,

120, 180, and 240) were simulated to verify how the
number of QTL controlling the trait could influence
the prediction of genetic value by genomic selection
methods.
A binomial distribution was assigned to the

importance of each QTL, using the following equation:

QTL importance = [n! / k! (n - k)!] × pk × q(n-k)

where q=0.5; and N = n - 1, where n is the number of
QTL. This distribution was adopted since it considers
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that there are some more important QTL, but that these
are not frequent and do not have major effects. This
fact makes the simulation more realistic for the study.
The expression of each QTL was defined by:

AA = μ + a; Aa = μ + d; aa = μ - a. Since the value of
d was defined as null, the mean degree of dominance
(d/a) was zero for all loci.
The genotypic value (GV) of each individual was

established by the following equation:

GV = ∑ni=1(QTLi importance × QTLi expression)

The environment effect was defined as a vector
independent of the genotypic value and was estimated
ollowing N(0,σ2), where σ2 is variance, whose value
was calculated from the heritability of the traits and the
value o genetic variance (σ2g). The heritability value
was previously defined. Traits with a heritability of 5,
20, 40, 60, 80, and 99% were simulated in the present
work, and σ2g was calculated as the variance of the
genotypic value of the individuals in the F2 population.
The phenotypic value (PV) was calculated as

ollows: PV = μ + GV + EV, where μ is the mean
deined by the user (μ = 100 or the present study), and
EV is the environmental value.
The mapping process was carried out after the

population was generated, starting with the analysis of
segregation of individual loci. Chi-square tests were
applied to verify if the markers generated in the study
segregated according to an F2 population. All linkage
groups were checked for restoration, considering size,
distance, and order of markers, which confirmed that
the F2 population had the desired simulation properties.
For the analyses, the following four genomic

selection methods, widely used in plant and animal
breeding, were tested: ridge-regression BLUP (RR-
BLUP), genomic BLUP (GBLUP), Bayesian estimation
method B (Bayes B), and reproducing kernel Hilbert
spaces regression (RKHS).
RR-BLUP and Bayes B were described by

Meuwissen et al. (2001). RR-BLUP assumes that each
marker has a variance equal to GVar/M, where GV is
genetic variance and M is the number of markers. In
the Bayes B method, the priori of the proportion of
markers associated with the phenotypic variance equal
to zero assumes an inverted chi-square distribution.
In RKHS, the genetic values are estimated by the

Gaussian process, and all parameters of the priori are
described by De Los Campos et al. (2010).

For the comparison of the genomic selection
methods, the phenotypic and genotypic predictive
abilities were defined as Pearson’s correlation between
the phenotypic value and the GEBV and as Pearson’s
correlation between the true genetic value and the
GEBV, respectively. In addition, Tukey’s test was used
for mean comparisons, at 5% probability, for each used
scenario.
The regression analysis (through linear, quadratic,

and cubic regression models) was used to verify the
influence of heritability and of the number of QTL
controlling the trait on the prediction accuracy of
the tested genomic selection methods, which were
evaluated with different heritability values (5, 20, 40,
60, 80, and 99%) and numbers of QTL simulated (60,
120, 180, and 240).
The linear, quadratic, and cubic regression models

were tested to predict the genetic correlation (Pearson’s
correlation between the true genetic value and the
GEBV) from the phenotypic correlation (Pearson’s
correlation between the phenotypic value and the
GEBV).
All analyses were performed using the R statistical

software (R Core Team, 2017), as follows: RR-BLUP
andGBLUP,withmixed.solve andkin;BLUPfunctions
in the rrBLUP package; and Bayes B and RKHS using
the BGLR function in the BGLR package. A total of
20,000 burn-ins and 100,000 MCMC iterations were
used in the Bayesian analysis. The convergence of
the Bayesian models was analyzed using the variance
parameters of the trace plot.

Results and Discussion

Significant differences were observed between
the genomic selection methods for all heritability
values evaluated, regardless of the number of QTL
for the phenotypic (Table 1) and genotypic (Table 2)
predictive abilities. In almost all evaluated scenarios,
both the phenotypic and genotypic predictive abilities
of GBLUP and RKHS were inferior to those of the
other methods, whereas those of the RR-BLUP and
Bayes B were significantly superior. For heritability
values above 40%, the Bayes B method was superior
to RR-BLUP.
According to the literature, the performance of a

model is strongly influenced by interallelic interaction.
For resistance to wheat rust, Ornella et al. (2012) found
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that the Bayesian Lasso and Bayesian ridge regression
presented superior results to that of the support vector
regression, a non-parametric method as the RKHS
used in the present study. The authors concluded that
parametric methods, such as RR-BLUP, Bayes B,
and GBLUP, are superior because the studied trait is
controlled by an additive gene effect. Contrastingly,
non-parametric methods, as RKHS, can capture non-
additive effects, such as dominance and epistasis, but

may even decrease accuracy when the trait has an
additive gene control, as verified by Zhao et al. (2013)
and in the present study, where RKHS presented lower
results in most of the evaluated scenarios. The fact
that all traits were simulated with only the additive
effect may have led all used methods to present similar
results, except the non-parametric RKHS (Tables 1
and 2). Heslot et al. (2012), working with maize (Zea
mays L.) and barley (Hordeum vulgare L.), compared

Table 1. Estimate of the phenotypic predictive ability with different values of heritability (h2) and numbers of quantitative
trait loci (QTL) of the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB),
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods(1).

Method RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

QTL number = 60 QTL number = 120

h2 = 5% 0.04a 0.05a 0.05a 0.02b 0.16b 0.16b 0.16b 0.17a

h2 = 20% 0.37a 0.37a 0.35b 0.35b 0.34a 0.35a 0.34b 0.34b

h2 = 40% 0.56b 0.58a 0.55c 0.55c 0.56a 0.57a 0.56a 0.56a

h2 = 60% 0.71b 0.73a 0.71b 0.71b 0.69b 0.70a 0.69b 0.69b

h2 = 80% 0.84b 0.86a 0.83c 0.82c 0.80b 0.85a 0.78c 0.79c

h2 = 99% 0.96b 0.99a 0.95c 0.95c 0.96b 0.99a 0.95c 0.96b

QTL number = 180 QTL number = 240

h2 = 5% 0.19a 0.19a 0.18b 0.18b 0.14a 0.14a 0.13b 0.13b

h2 = 20% 0.39a 0.39a 0.38b 0.38b 0.32a 0.32a 0.31b 0.31b

h2 = 40% 0.52a 0.52a 0.51b 0.51b 0.54b 0.55a 0.53c 0.53c

h2 = 60% 0.69b 0.70a 0.69b 0.69b 0.69a 0.69a 0.68b 0.68b

h2 = 80% 0.84b 0.86a 0.84b 0.84b 0.79c 0.86a 0.85b 0.85b

h2 = 99% 0.97b 0.99a 0.96c 0.96c 0.97b 0.99a 0.96c 0.97b

(1)Means followed by equal letters, in the lines, do not differ by Tukey’s test, at 5% probability.

Table 2. Estimate of the genotypic predictive ability with different values of heritability (h2) and numbers of quantitative
trait loci (QTL) of the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB),
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods(1).

Method RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

QTL number = 60 QTL number = 120

h2 = 5% 0.56a 0.55b 0.51d 0.53c 0.64a 0.64a 0.60c 0.63b

h2 = 20% 0.77b 0.78a 0.76c 0.76c 0.75a 0.75a 0.74b 0.74b

h2 = 40% 0.89b 0.92a 0.88c 0.88c 0.86a 0.86a 0.85b 0.85b

h2 = 60% 0.91b 0.93a 0.91c 0.91c 0.91b 0.92a 0.91b 0.91b

h2 = 80% 0.94b 0.97a 0.93c 0.93c 0.90b 0.96a 0.89c 0.89c

h2 = 99% 0.97b 0.99a 0.95c 0.96c 0.97b 0.99a 0.96c 0.96c

QTL number = 180 QTL number = 240

h2 = 5% 0.64b 0.64b 0.63c 0.65a 0.56a 0.56a 0.52b 0.52b

h2 = 20% 0.80a 0.80a 0.79b 0.79b 0.77a 0.77a 0.75b 0.74c

h2 = 40% 0.85b 0.86a 0.84c 0.84c 0.86b 0.87a 0.85c 0.85c

h2 = 60% 0.89b 0.91a 0.88c 0.88c 0.90b 0.91a 0.89c 0.89c

h2 = 80% 0.94b 0.96a 0.94b 0.94b 0.95b 0.96a 0.94c 0.94c

h2 = 99% 0.97b 0,99a 0.96c 0.96c 0.98b 0,99a 0.97c 0.97c

(1)Means followed by equal letters, in the lines, do not differ by Tukey’s test, at 5% probability.
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11 genomic selection methods, separating them into
two groups: parametric and non-parametric. In the
present work, the RKHS method was classified in a
group different from that of the other methods.
Another factor that made the GBLUP and RR-BLUP

traditional methods present similar results to that of the
Bayesian method was the use of non-informative priori
due to the default of the used BGLR package. When
the non-informative priori is used, the posteriori is
based only on the likelihood function, i.e., although the
method was Bayesian, the results only transcribed the
likelihood function in the same way that the traditional
methods do (Bhering et al., 2015). Moreover, all
Bayesian methods of genomic selection use the same
original model, and the only difference between them
is the hyperparameters in the priori (Xu et al., 2021).
Since the priori was non-informative, the methods
ended up being very similar, and, consequently, did
not present significant differences.
If the priori information on the trait under study is

not available, the RR-BLUP and GBLUP traditional
methods can be used in the prediction of genetic value.
Otherwise, when the priori information is available,
the use of Bayesian methods will present better results
(Meuwissen et al., 2001). However, if, in addition to
the priori information, dominance and/or epistatic
effects are also being estimated, the RKHS method is
more appropriate.
The values of the phenotypic and genotypic

predictive abilities increased with the increase in the
heritability value, regardless of the method used or
of the number of QTL controlling the trait (Figures
1 and 2).
For the phenotypic predictive ability, there was

a positive linear relationship with heritability in all
scenarios with a different number of QTL. In addition,
the value of the coefficient of determination (R2) of
the linear regression was higher than 0.94 for all the
genomic selection methods tested.
For the genotypic predictive ability, the relationship

with heritability was quadratic in all scenarios with
a different number of QTL controlling the trait. A
plateau was reached when the heritability of the trait
reached 60% (Figure 2). The R2 value of the quadratic
regression was higher than 0.93 for all the genomic
selection methods used.
The correlation between heritability and accuracy is

positive, as verified in wheat for yellow rust and stem

rust (Ornella et al., 2012), as well as in maize for grain
yield and grain moisture (Zhao et al., 2013). However,
heritability and the number of QTL controlling the
trait are correlated factors, and, sometimes, traits with
a lower heritability value and a higher QTL number
present a higher accuracy than those with a higher
heritability and a lower QTL number, as noted by
Heffner et al. (2011). Similarly, in the present work,
all traits controlled by 240 QTL presented a higher
accuracy than those controlled by 60 QTL, regardless
of heritability, although this relationship was not linear
(Figures 3 and 4). However, for traits controlled by
the same QTL number, the higher the heritability
value, the higher were the phenotypic (Figure 1) and
genotypic (Figure 2) accuracies, representing a linear
and a quadratic relationship, respectively.
In breeding programs, selection accuracy can be

significantly improved through genomic selection
(Voss-Fels et al., 2019), mainly for traits with high
phenotypic evaluation costs (protein and oil contents,
for example) or that are very complex (resistant to
diseases) due to their usually low heritability (lower
than 30%), which makes selection based only on
phenotype very difficult. Therefore, as observed in
the present work, the lower the heritability value, the
greater the difference between the reliability (square
of the predictive accuracy) and heritability of a trait,
i.e., for low heritability traits, selection based on the
GEBV predicted by the genomic selection methods
will be much more accurate than selection based on
phenotypic values.
In the different scenarios simulated by varying the

number of QTL for the prediction of genetic value, the
R2 values of the cubic regressions, ranging from 0.58
to 0.97, were higher than those of the other regression
models (Figure 3). Therefore, no relationship was
observed between the number of QTL controlling the
trait and phenotypic predictive ability, regardless of
the heritability of the trait.
When a trait is controlled by a low number of

QTL of major effect, the Bayesian method showed a
better performance than the GBLUP and RR-BLUP
traditionalmethods,whereas the oppositewas observed
when the number of QTL was high (Meuwissen et al.,
2001; Zhong et al., 2009). However, this difference may
be more influenced by other traits, such as heritability,
training population size, and population structure,
rather than by QTL number (Desta & Ortiz, 2014).
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The obtained results show that studying a factor
separately can super- or underestimate the values
estimated by genomic selection methods. Therefore,
further works should be carried out considering
several factors simultaneously, in order to establish

the best genomic selection model for each population
structure, which, in the present study, was F2.
For the genotypic predictive ability, no relationship

was observed between the values predicted by the
genomic selection methods and the number of QTL

Figure 1. Phenotypic predictive ability (PPC) in function of heritability, with different numbers of QTL controlling the
trait, of the following four genomic selection methods: Bayesian estimation method B (A), genomic best linear unbiased
prediction (B), reproducing kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D).
R2, coefcient o determination.
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controlling the quantitative trait. Once again, cubic
regression presented the best results, with a R2 ranging
from 85.29 to 98.58% (Figure 4).
Between the genetic and phenotypic correlations

(Tables 3, 4, 5, and 6), a low R2 value was verified

for the linear, quadratic, and cubic regression models
evaluated, regardless of the genomic selection method
used to estimate both correlations. The exception was
the 99% heritability, which resulted in a R2 value
higher than 89% for RR-BLUP, RKHS, and GBLUP.

Figure 2. Genotypic predictive ability (GPC) in function of heritability, with different numbers of QTL controlling the
trait, of the following four genomic selection methods: Bayesian estimation method B (A), genomic best linear unbiased
prediction (B), reproducing kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D).
R2, coefcient o determination.
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Moreover, the genomic selection methods differed
regarding the prediction of genetic correlation by
phenotypic correlation. However, no pattern was
detected between the methods, with the results

of R2 being completely random. The R2 values of
the regressions increased with the increase in the
heritability value for almost all evaluated scenarios
with varying numbers of QTL controlling the trait,

Figure 3. Phenotypic predictive ability (PPC) of the following four genomic selection methods in function of the number of
QTL controlling the trait (60, 120, 180, and 240) and their respective coefcient o determination (R2) values, evaluated in
different heritability values: Bayesian estimation method B (A), genomic best linear unbiased prediction (B), reproducing
kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D).
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regardless of the genomic selection method used to
estimate the genetic and phenotypic correlations.
According to Dekkers (2007), accuracy, also known

as the genetic correlation between the true genetic
value and the GEBV, is estimated by the correlation

between the phenotypic value and the GEBV divided
by heritability root squared. The linear, quadratic, and
cubic regressionmodelswere used to predict the genetic
correlation in function of the phenotypic correlation.
However, the R2 evaluation of the regression models

Figure 4. Genotypic predictive ability (GPC) of the following four genomic selection methods in function of the number of
QTL controlling the trait (60, 120, 180, and 240) and their respective coefcient o determination (R2) values, evaluated in
different heritability values: Bayesian estimation method B (A), genomic best linear unbiased prediction (B), reproducing
kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D).
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2 2 2 2

Heritability = 5%: R = 92.89 −R = 95.74 −R = 94.71 −R = 93.77
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Heritability = 60%: R = 94.95 −R = 92.66 −R = 93.97 −R = 90.31
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Table 3. Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 60 quantitative
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB),
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.

Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

Heritability = 5% Heritability = 20%

Linear 32.20 30.53 30.68 35.27 48.31 10.57 32.67 38.97

Quadratic 33.16 30.69 31.17 35.56 48.67 11.20 32.78 38.97

Cubic 34.10 36.09 31.20 35.70 49.80 13.97 33.68 40.29

Heritability = 40% Heritability = 60%

Linear 29.00 35.41 61.54 54.33 51.08 61.65 40.73 34.34

Quadratic 29.03 37.49 61.69 55.73 51.15 61.67 41.17 34.37

Cubic 29.68 37.62 63.35 57.10 51.34 62.22 41.17 34.68

Heritability = 80% Heritability = 99%

Linear 50.63 69.96 54.71 60.70 94.30 96.00 44.52 97.30

Quadratic 51.11 69.98 54.72 61.74 94.44 96.14 44.52 97.31

Cubic 51.11 70.08 54.72 61.79 94.44 96.14 44.52 97.31

Table 4.Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 120 quantitative
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB),
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.

Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

Heritability = 5% Heritability = 20%

Linear 10.46 41.52 18.32 24.00 25.92 44.02 27.74 46.04

Quadratic 13.15 41.56 19.30 30.45 27.28 44.55 30.25 46.04

Cubic 13.23 47.76 19.71 35.70 27.46 44.75 30.25 46.85

Heritability = 40% Heritability = 60%

Linear 21.10 17.80 52.50 11.62 36.73 43.84 34.77 52.93

Quadratic 23.67 25.27 57.68 12.09 37.29 49.81 35.52 52.97

Cubic 28.49 25.72 58.29 12.23 37.79 50.49 45.11 53.08

Heritability = 80% Heritability = 99%

Linear 68.36 72.07 58.31 54.47 94.63 96.88 10.23 95.43

Quadratic 68.47 72.56 58.77 54.56 94.64 96.91 10.23 95.89

Cubic 69.01 72.63 59.44 59.04 94.64 96.91 10.23 95.89

Table 5.Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 180 quantitative
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB),
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.

Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

Heritability = 5% Heritability = 20%

Linear 51.23 21.41 24.94 27.04 32.00 44.90 35.76 30.18

Quadratic 51.31 21.58 24.97 27.13 33.06 44.94 36.49 38.49

Cubic 51.61 21.94 26.09 30.31 35.96 45.09 36.59 41.45

Heritability = 40% Heritability = 60%

Linear 39.73 35.04 36.26 19.38 45.74 49.68 44.41 51.75

Quadratic 39.84 35.41 36.26 19.56 46.41 53.45 56.03 51.75

Cubic 40.03 36.84 36.27 20.15 47.30 53.59 56.09 52.25

Heritability = 80% Heritability = 99%

Linear 45.01 52.35 26.63 63.75 95.96 95.00 40.83 95.24

Quadratic 45.01 52.52 26.69 65.35 95.97 95.00 40.83 95.29

Cubic 45.03 52.70 26.69 65.48 95.97 95.00 40.83 95.29
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revealed that the relationship between the genetic and
phenotypic correlations cannot be explained by simple
regression models (Tables 3, 4, 5, and 6).
For heritability values closer to 1, i.e., for a small

environmental effect, the regression models explained
more accurately the genetic correlation from the
phenotypic correlation (Tables 3, 4, 5, and 6). This fact
is explained by the relationship between heritability
and correlation, in which the correlation of the
phenotypic value with the genetic value is the square
root of heritability.
The results obtained in the present study are

an indicative that there is no linear relationship
between genetic and phenotypic correlations when
the heritability of the trait is lower than 80%. This
means that nonlinear models, such as artificial neural
networks, must be used to estimate more accurately
the genetic correlation in function of the phenotypic
correlation.

Conclusions

1. Heritability presents a positive linear relationship
with the phenotypic predictive ability and a positive
quadratic relationship with the genotypic predictive
ability of the evaluated genomic selection methods.
2. The number of QTL controlling the trait has

no relationship with the phenotypic and genotypic
predictive abilities of the tested methods.
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