Empresa Brasileira de Pesquisa Agropecuária Embrapa Soja Ministério da Agricultura e Pecuária

Eventos Técnicos & Científicos

Julho, 2024

RESUMOS EXPANDIDOS 19^a Jornada Acadêmica da Embrapa Soja

30 e 31 de julho de 2024 Londrina, PR Embrapa Soja

Rodovia Carlos João Strass, acesso Orlando Amaral, Distrito de Warta

Caixa Postal 231, CEP 86001-970, Londrina, PR

Fone: (43) 3371 6000 Fax: (43) 3371 6100 www.embrapa.br/soja

https://www.embrapa.br/fale-conosco/sac/

Comitê de Publicações da Embrapa Soja Presidente: Roberta Aparecida Carnevalli

Secretário-executivo: Regina Maria Villas Bôas de Campos Leite

Membros: Claudine Dinali Santos Seixas, Clara Beatriz Hoffmann-Campo, Fernando Augusto Henning, Ivani de Oliveira Negrão Lopes, Leandro Eugênio Cardamone Diniz, Maria

Cristina Neves de Oliveira, Mônica Juliani Zavaglia Pereira e Norman Neumaier

Edição executiva: Vanessa Fuzinatto Dall'Agnol

Normalização: *Valéria de Fátima Cardoso* Diagramação: *Marisa Yuri Horikawa*

Organização da publicação: Regina Maria Villas Bôas de Campos Leite, Larissa Alexandra

Cardoso Moraes, Kelly Catharin

1ª edição

Publicação digital: PDF

As opiniões emitidas nesta publicação são de exclusiva e de inteira responsabilidade dos autores, não exprimindo, necessariamente, o ponto de vista da Embrapa.

É de responsabilidade dos autores a declaração afirmando que seu trabalho encontra-se em conformidade com as exigências da Lei nº 13.123/2015, que trata do acesso ao Patrimônio Genético e ao Conhecimento Tradicional Associado.

Todos os direitos reservados

A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).

Dados Internacionais de Catalogação na Publicação (CIP) Embrapa Soja

Jornada Acadêmica da Embrapa Soja (19. : 2024: Londrina, PR).

Resumos expandidos [da] XIX Jornada Acadêmica da Embrapa Soja, Londrina, PR, 30 e 31 de julho de 2024 -- Londrina : Embrapa Soja, 2024.

PDF (111 p.) -- (Eventos técnicos & científicos / Embrapa Soja, ISSN 0000-0000 ; 4)

1. Soja. 2. Pesquisa agrícola. I. Título. II. Série.

CDD (21. ed.) 630.2515

Interação nitrogênio e magnésio no estado nutricional do grão-de-bico

Marcos Vinicius Boiani⁽¹⁾, Stéfany Ramos Romagnolli Silvestrim⁽²⁾, Adônis Moreira⁽³⁾, Larissa Alexandra Cardoso Moraes⁽³⁾, Oscar Fontão de Lima Filho⁽⁴⁾

(1) Estudante de Agronomia, Universidade Estadual de Londrina, bolsista PIBIC/CNPq, Londrina, PR. (2) Doutorando, Universidade Estadual de Londrina, Londrina, PR. (3) Pesquisador, Embrapa Soja, Londrina, PR. (4) Pesquisador, Embrapa Hortaliças, Londrina, PR.

Introdução

A cultura do grão-de-bico (*Cicer arietinum* L.) é considerada uma fonte de alimento com elevado valor nutricional, sendo seu cultivo indicado principalmente para regiões semiáridas, devido a sua relativamente baixa demanda hídrica (Nascimento et al., 2016). Apesar do potencial de expansão de cultivo de grão-de-bico no Brasil, o país ainda importa quase a totalidade do grão-de-bico, não apresentando uma tradição de cultivo comercial dessa leguminosa (Delfim et al., 2024).

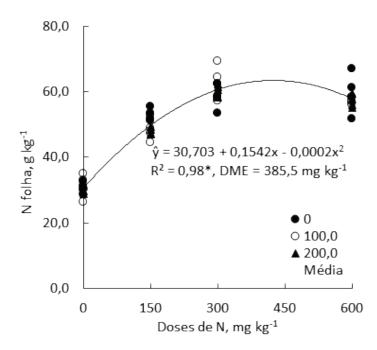
O nitrogênio (N) é o nutriente requerido em maior quantidade pelas plantas por estar associado a diversos processos metabólicos vitais para seu desenvolvimento (Epstein; Bloom, 2006). O N possui ciclo metabólico semelhante ao do magnésio (Mg), de forma a apresentar uma relação sinérgica com esse elemento. O Mg, por sua vez, desempenha um papel crucial na fotossíntese devido à sua presença central na estrutura da clorofila, o pigmento responsável por captar a luz solar e iniciar a conversão de energia luminosa em energia química (Marschner, 2012).

Além disso, o N é um componente fundamental das proteínas nas plantas. A síntese de proteínas é um processo que requer a participação de enzimas específicas, muitas das quais dependem do magnésio para sua atividade. Portanto, o Mg desempenha um papel indireto, mas crucial, na formação e na função das proteínas, incluindo aquelas que transportam e armazenam N nas plantas (Marschner, 2012). Embora o Mg não esteja diretamente envolvido na absorção de N pelas plantas, ele desempenha um papel crucial na otimização das condições para a absorção eficiente de nutrientes, incluindo o N, através de seu impacto na fotossíntese, na síntese de proteínas e na regulação do ambiente das raízes. A deficiência de magnésio pode prejudicar a capacidade da planta de utilizar de forma eficaz o N disponível no solo (Epstein; Bloom, 2006).

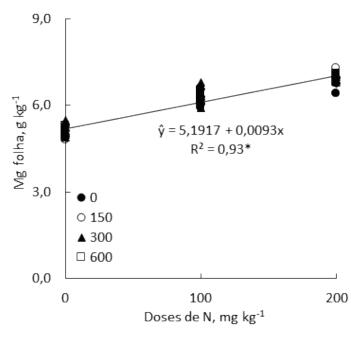
Face ao exposto, diante da necessidade de esclarecimentos científicos em relação à interação do N e Mg para a cultura do grão-de-bico, o presente estudo tem como objetivo avaliar a influência de combinações de doses de N e de Mg sobre o estado nutricional das plantas.

Material e métodos

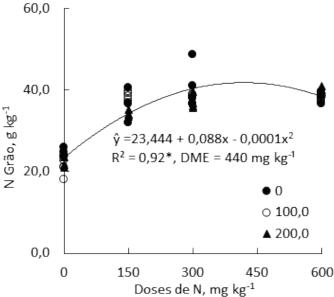
O experimento foi realizado em condições de casa de vegetação da Embrapa Soja, Londrina, em delineamento inteiramente casualizado e esquema fatorial 4x3, com quatro repetições. A cultivar utilizada foi a BRS Aleppo. Os tratamentos foram constituídos pelos seguintes fatores: a) quatro doses de N (fonte: ureia -45% de N) -0, 150, 300 e 600 mg kg⁻¹ e b) três doses de Mg (fonte: MgCl₂) com aplicação no plantio -0, 100 e 200 mg kg⁻¹. Para a condução do experimento foi coletado a camada superficial (0 -20 cm) de um Latossolo Vermelho Eutroférrico de textura argilosa da região de Londrina (Estado do Paraná).


O solo foi acondicionado em vasos de barro com capacidade de três litros, sendo utilizadas duas plantas por vaso. Na correção da acidez do solo, foi utilizado CaCO₃ para elevar a saturação por bases a 60%. Após 30 dias da incorporação da calagem, exceto o N e Mg, a adubação com os demais nutrientes foi realizada conforme recomendação indicada por Moreira et al. (2011) para experimentos conduzidos em condições de casa-de-vegetação. As doses de N foram aplicadas parceladas em duas vezes, sendo a primeira parcela no plantio e segunda em cobertura durante o desenvolvimento das plantas (30 dias), enquanto o Mg foi em dose única na semeadura. As variáveis analisadas foram os teores de Mg e N nas folhas e N nos grãos e realizadas conforme metodologia proposta por Malavolta et al. (1997).

Os dados foram submetidos à análise de variância (ANOVA), teste F e se significativo para interação ou efeito isolado das doses de N, os dados foram ajustados por meio de regressões polinomiais ($p \le 0.05$). As pressuposições de normalidade dos erros e homogeneidade das variâncias foram testadas pelos métodos de Shapiro e Wilk (1965). Todas as análises foram realizadas com o auxílio do software SISVAR (Ferreira, 2019).


Resultados e discussão

Os resultados da ANOVA indicaram valores do teste F com efeito significativo para as doses de N sobre a concentração de N foliar (Figura 1), com incremento do teor foliar, principalmente nas doses de 300 a 450 mg kg-¹ de N. Entretanto, a partir da dose estimada de 385,5 mg kg-¹, houve decréscimo na concentração de N foliar, se acentuando ainda mais na dose de 600 mg kg-¹ de N. Os resultados apresentados corroboram os estudos realizados por Wang et al. (2018), indicando o limite de absorção e translocação de nutriente pelas plantas. Esses autores avaliaram os efeitos da aplicação de doses de N no crescimento e na nutrição desses vegetais e constataram que a aplicação de doses excessivas de N resultaram em aumento significativo no crescimento vegetativo das plantas, mas também acarretou diminuição nos teores de N foliar.


O teor foliar de Mg foi linear independentemente das doses de N aplicada (Figura 2) e corrobora Canizella et al. (2015), que trabalhando com quatro cultivares de feijoeiro também obtiveram resultados similares sobre o efeito das doses de Mg sobre o teor foliar do nutriente. Com relação ao teor de N nos grãos (Figura 3), as doses de N acarretaram efeito similar aos teores foliares de N, com efeito quadrático até a dose estimada de 440,0 mg kg-1 e correlação significativa do N folha vs N grão (Figura 4). Os teores foliares de N e Mg não apresentaram correlação significativa (p > 0,05) mesmo com o sinergismo destes dois nutrientes nas plantas e a complementação fisiológica de ambos, como a participação da composição da molécula da clorofila (Marschner, 2012).

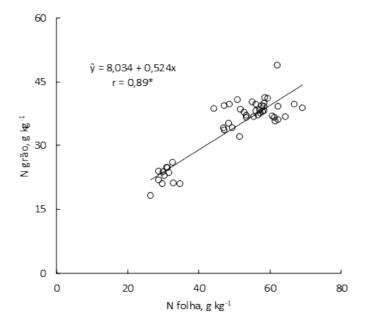

Figura 1. Efeito de diferentes doses de N (mg kg⁻¹) na concentração de N foliar (mg kg⁻¹). *significativo a 5% de probabilidade.

Figura 2. Efeito de doses de N (mg kg⁻¹) na concentração de Mg foliar (mg kg⁻¹). *significativo a 5% de probabilidade.

Figura 3. Efeito de doses de N (mg kg⁻¹) na concentração de N nos grãos (g kg⁻¹). *significativo a 5% de probabilidade.

Figura 4. Correlação ($p \le 0.05$) das variáveis N na folha (g kg⁻¹) e N nos grãos (g kg⁻¹) para a cultivar de grão-de-bico BRS Aleppo. *significativo a 5% de probabilidade.

Conclusões

Houve interação entre N e Mg e as doses de N influenciaram a concentração de Mg foliar. O impacto das doses de N na concentração de N nos grãos é destacado, mostrando um decréscimo a partir de 440 mg kg⁻¹, indicando que o excesso de N pode diminuir a concentração de N nos grãos. A correlação significativa entre o teor foliar de N e o N nos grãos evidenciou a alta mobilidade do nutriente, sugerindo que ambos são indicativos importantes do estado nutricional de N na planta. Semelhante aos teores nos grãos, a aplicação de N causou efeito positivo no incremento de N foliar, entretanto, a partir do tratamento com dose estimada de 385,5 mg kg⁻¹, houve decréscimo na concentração de N foliar.

Agradecimentos

Ao Laboratório de Solos da Universidade Estadual de Londrina (UEL) pelas análises e ao CNPq pelo suporte financeiro.

Referências

CANIZELLA, B. T.; MOREIRA, A.; MORAES, L. A. C.; FAGERIA, N. K. Efficiency of magnesium use by common bean varieties regarding yield, physiological components and nutritional status of plants. **Communications in Soil Science and Plant Analysis**, v. 46, p. 1376-1390, 2015.

DELFIM, J.; MOREIRA, A.; MORAES, L. A. C.; SILVA, J. F.; MOREIRA, P. A. M.; LIMA FILHO, O. F. Soil phosphorus availability impacts chickpea production and nutritional status in tropical soils. **Journal of Soil Science and Plant Nutrition**, 2024. 16 p. DOI: 10.1007/s42729-024-01738-5.

EPSTEIN, E.; BLOOM, A. J. **Nutrição mineral de plantas princípios e perspectivas**: metabolismo mineral. Londrina: Ed. Planta, 2006. 393 p.

FERREIRA, D. F. Sisvar: a computer analysis system to fixed effects split plot type designs. **Revista Brasileira de Biometria**, v. 37, p. 529-535, 2019.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. **Avaliação do estado nutricional de plantas**: princípios e aplicações. Piracicaba: Potafós, 1997. 319 p.

MARSCHNER, P. Mineral nutrition for higher plants. London: Academic Press, 2012. 649 p.

MOREIRA, A.; FAGERIA, N. K.; GARCIA Y GARCIA, A. Effect of liming on the nutritional conditions and yield of alfalfa grown in tropical conditions. **Journal of Plant Nutrition**, v. 34, p. 1107-1119, 2011.

NASCIMENTO, W. M.; SILVA, P. P. da; ARTIAGA, O. P.; SUINAGA, F. A. Grão-de-bico. In: NASCIMENTO, W. M. (ed.). **Hortaliças leguminosas**. Brasília, DF: Embrapa, 2016. p. 89-118.

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality. Biometrika, v. 52, p. 591-611, 1965.

WANG, X.; ZHANG, Y.; YANG, C.; ZHANG, X. Effects of nitrogen application rates on growth and nitrogen uptake of rice plants. **Journal of Plant Nutrition**, v. 41, p.1320-1335, 2018.