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Soil Science/ Original Article

Geostatistics and multivariate
analysis to determine
experimental blocks for sugarcane

Abstract — The objective of this work was to define experimental blocks for
sugarcane experiments using geostatistical techniques, principal component
analysis, and clustering techniques applied to soil properties. For this, data of
soil chemical properties from a sugarcane experiment were used. Geostatistical
techniques were applied to identify the spatial variability of these properties
and to estimate the values for non-sampled locations through kriging. The
principal components analysis was used for dimensional reduction, and,
with the new variables obtained, the cluster analysis was performed using
the k-means method to determine the experimental blocks with two to five
replicates. Of the 12 analyzed variables, 10 showed spatial dependence. The
principal component analysis allowed reducing the dimensionality of the data
to two variables, which explained 82.27% of total variance. The obtained
blocks presented irregular polygonal shapes, with different formats and sizes,
and some of them showed discontinuities. The proposed methodology has the
potential to identify more uniform areas in terms of soil chemical properties
to allocate experimental blocks for sugarcane.

Index terms: experimental design, field experimentation, kriging, principal
component analysis, spatial variations.

Geoestatistica e analise multivariada para determinagao
de blocos experimentais para cana-de-agucar

Resumo — O objetivo deste trabalho foi definir blocos experimentais para
experimentos com cana-de-agucar, com uso de técnicas de geoestatistica,
analise de componentes principais e técnicas de agrupamento aplicadas as
propriedades do solo. Para isso, foram utilizados dados de propriedades
quimicas do solo de um experimento com cana-de-agucar. As técnicas de
geoestatistica foram aplicadas para identificar a variabilidade espacial dessas
propriedades e estimar os valores para locais ndo amostrados por meio de
krigagem. A analise de componentes principais foi aplicada para redugao
dimensional, e, com as novas variaveis obtidas, realizou-se a analise de
agrupamento pelo método k-means, para determinar os blocos experimentais
com duas a cinco repeti¢des. Das 12 variaveis analisadas, 10 apresentaram
dependéncia espacial. A analise de componentes principais permitiu reduzir
a dimensionalidade dos dados para duas variaveis, que explicaram 82,27% da
variancia total. Os blocos obtidos apresentaram formas poligonais irregulares,
com diferentes formatos e tamanhos, ¢ alguns mostraram descontinuidade. A
metodologia proposta tem potencial para identificar areas mais homogéneas
em termos de propriedades quimicas do solo, para alocar blocos experimentais
de cana-de-agucar.

Termos para indexacio: delineamento experimental, experimentacdo de
campo, krigagem, analise de componentes principais, variacdes espaciais.
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Introduction

Brazil stands out in sugarcane (Saccharum
officinarum L.) production, which is expected to reach
652.9 million of tons in the 2023/2024 crop season,
representing an increment of 6.9% in relation to that of
2022/2023 (Acompanhamento..., 2023). However, the
increased production area also increases environmental
impacts, which, added to climate changes, presents a
great challenge to producers (Pittelkow et al., 2015).

Inthis context, agricultural experimentation emerges
as an important tool to improve crop productivity.
Among the basic principles of experimentation, local
control is key to enhance experiment efficiency by
dividing the known heterogeneous environment into
more homogeneous sections (Costa et al., 2007). This
procedure aims to reduce experimental error in order
to raise experimental precision through the systematic
control of sources of variation.

Regarding the control of environment variability,
the choice between a randomized complete block
design and a completely randomized design depends
on whether the plot-to-plot variation is smaller than
that of the block-to-block (Clewer & Scarisbrick,
2013), considering that the efficiency of an experiment
depends on defining blocks as uniform as possible. Any
unwanted variation within the blocks may maximize
confounding factors in relation to the treatments.

To support experiment planning, geostatistics
is an alternative that can be used to identify the
spatial structure of soil properties through kriging
interpolation (Oliver & Webster, 2014; Carneiro et al.,
2016a, 2016b; Silva et al., 2017; Bhunia et al., 2018;
Amaral & Justina, 2019).

The objective of this work was to define experimental
blocks for sugarcane experiments using geostatistical
techniques, principal component analysis, and
clustering techniques applied to soil properties.

Materials and Methods

For the study, the used data were those of soil fertility
collected in the research by Ferreira (2020), with the
support of Centro de Pesquisa e Melhoramento da
Cana-de-Acucar, an institution for sugarcane research
and improvement of Universidade Federal de Vicosa.
The sugarcane experimental area, a 42x80 m plot,
covering 3,360 m?, was located in the municipality of
Oratorios, in the state of Minas Gerais, Brazil.
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The area was subjected to a systematic sampling, in
a 4x9regular grid, with 36 sampling points (Figure 1).
Point density was approximately 0.01 point per square
meter, a value considered intermediate when compared
with those found in the literature (Pasini et al., 2021;
Adao et al., 2022).

Soil samples were collected in October 2019, at a
depth between 0-20 cm, properly stored, and, then,
sent to the municipality of Vigosa, also in the state
of Minas Gerais, for analyses. The following 12
soil chemical properties were evaluated: hydrogen
potential (pH), phosphorus, potassium, magnesium,
calcium, aluminum, potential acidity (H+Al), total
exchangeable bases, effective cation exchange capacity
(CTC,), cation exchange capacity at pH, (CTCy),
aluminum saturation index, and base saturation index.
The used extractors were: Mehlich-1 for K and P; KC1
1.0 mol L! for Ca, Mg, and Al; and calcium acetate 0.5
mol L' at pH 7 for H+Al (Donagema et al., 2011).

Shapiro-Wilk’s test, at a 5% significance level,
was applied to check whether the distribution of the
variables met normality assumption. Additionally,
histograms and boxplot graphs for each analyzed
variable were used to complement the analysis of data
distribution. The boxplot was specifically used to
detect and remove outliers as recommended by Smiti
(2020). According to Santos et al. (2017), because
they are considered inconsistent values, outliers can
impair the quality of the variogram and geostatistical
interpolation.

The base package of the R software (R Core Team,
2020), version 4.0.2, was used, together with the
geoR package, version 1.8.1, to identify the spatial
dependence of the variables and to fit a model.

When spatial dependence was observed, the
variograms were subjected to the variofit function of
the geoR package. The coefficients of the models were
estimated using the methods of ordinary least squares
or weighted least squares (Cressie, 1985).

In order to evaluate the quality of the fit, the
Jackknife cross-validation technique was carried out
using the xvalid function of the geoR package. For
this, the following aspects of cross-validation were
used: angular coefficient of the regression between
estimated and observed values equal or near 1, mean of
the estimation error near zero, mean of the standardized
error near zero, and variance of the standardized
estimation error near 1 (Mendoza Hernandez, 2021).
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After model fitting, the spatial dependence index
(SDI) suggested by Biondi et al. (1994) was calculated
in order to determine the degree of intensity of spatial
dependence, using the following equation:

SI)I:(jl/(jl'i'(:()>< 100

where C, is the contribution, and C, is the nugget effect.

In the absence of spatial dependence, interpolation
can be performed using other non-stochastic methods,
among which the inverse distance weighted estimation
stands out (Salekin et al., 2018; Chen et al., 2019;
Shukla et al., 2020).

For the interpolation of the data of soil chemical
properties (36 sampled values for each attribute), the

Figure 1. Sugarcane (Saccharum officinarum) experimental
area in the municipality of Oratorios, in the state of Minas
Gerais, Brazil. The yellow points indicate the locations
where the chemical properties of the soil were analyzed in
a 4x9 regular grid.

Source: adapted from Ferreira (2020).

ordinary kriging technique was carried out using the
obtained adjusted variogram. This type of kriging was
chosen because it is a popular method that provides
the best unbiased linear estimative according to Bai &
Tahmasebi (2021).

For the principal component analysis, the collected
andestimated datawereused, resultingin 729 coordinate
points. The first k components that explained 80% or
more of the total accumulated variance were chosen
(Jolliffe & Cadima, 2016). Afterwards, clustering was
performed by parameterizing the algorithm in order
to find clusters in the same number of suggested
experimental blocks (two, three, four, and five). Using
the results of the clustering analysis, maps of the
experimental area were generated.

Results and Discussion

In terms of spatial distribution, most of the variables
showed a better fit to the spherical model (Figure 2). In
addition, all variables presented a nugget effect, except
the base saturation index, which showed a null value
until the third decimal place (Table 1). A pure nugget
effect was only found for H+Al and CTC,, which were
properly addressed using the inverse distance weighted
estimation. In general, the range estimated for spatial
dependence was below 100 m, with an average of 57 m,
which is equivalent to 71.6% of the largest dimension
of 80 m of the experimental area. Souza et al. (2014)
concluded that increasing the number of samples
changes the results of the geostatistical analysis and
widens their range.

According to the SDI (Table 1), 80% of the soil
attributes presented a moderate spatial dependence.
However, CTC, and the base saturation index showed
a strong dependence, which is related to their smaller
nugget effect when compared with the C, contribution
value obtained for each of these variables. The values
found for the inverse distance weighted estimation in
the present study were higher for P, Ca, and Mg and
lower for K in comparison with those reported by
Carvalho et al. (2002). Almeida & Guimaraes (2016),
studying the soil of a coffee (Coffea arabica L.) crop,
verified a high spatial dependence only for pH.

For H+Al and CTC,, it was not possible to identify
spatial dependence, being necessary to use the
interpolator weighted by inverse distance. The map
for H+AI showed some similarity to the one obtained
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Figure 2. Semivariograms of the soil properties from a sugarcane (Saccharum officinarum) experimental area in the
municipality of Oratorios, in the state of Minas Gerais, Brazil. SB, total exchangeable bases; CTC,, effective cation exchange
capacity; V, base saturation index; and m, aluminum saturation index.
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