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Abstract: The present work aimed to obtain bioproducts from Passiflora cincinnata seeds, the Brazilian
Caatinga passion fruit, as well as to determine their physical, chemical and biological properties. The
seeds were pressed in a continuous press to obtain the oil, which showed an oxidative stability of
5.37 h and a fatty profile rich in linoleic acid. The defatted seeds were evaluated for the recovery of
antioxidant compounds by a central rotation experimental design, varying temperature (32–74 ◦C),
ethanol (13–97%) and solid–liquid ratio (1:10–1:60 m/v). The best operational condition (74 ◦C, 58%
ethanol, 1:48) yielded an extract composed mainly of lignans, which showed antioxidant capacity and
antimicrobial activity against Gram-positive and Gram-negative bacteria. The microencapsulation of
linoleic acid-rich oil through spray drying has proven to be an effective method for protecting the
oil. Furthermore, the addition of the antioxidant extract to the formulation increased the oxidative
stability of the product to 30% (6.97 h), compared to microencapsulated oil without the addition of
the antioxidant extract (5.27 h). The microparticles also exhibited favorable technological character-
istics, such as low hygroscopicity and high water solubility. Thus, it was possible to obtain three
bioproducts from the Brazilian Caatinga passion fruit seeds: the oil rich in linoleic acid (an essential
fatty acid), antioxidant extract from the defatted seeds and the oil microparticles added from the
antioxidant extract.

Keywords: vegetable oil; antioxidant extract; spray dryer; microparticles; antibacterial activity

1. Introduction

The passion fruit is native to Latin America. The most used commercial species are the
yellow passion fruit (Passiflora edulis Curtis) and the purple passion fruit (Passiflora edulis Sims).
However, although less commercially explored, species such as P. alata, P. quadrangularis L.,
P. cincinnata Mast., and P. mollisima Bailey present unique sensory, chemical, and technologi-
cal characteristics, increasing the fruit’s potential for edible and cosmetic purposes. Passion
fruit juice and pulp are the main products derived from its processing. They can be used as
ingredient in ice cream, jams, or even consumed in natura [1–3]. According to the Brazilian
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Institute of Geography and Statistics (IBGE), the global production of passion fruit was
estimated to be 1.5 million tons, with Brazil being the largest producer, having produced
about 1 million tons in 2021 [4].

Passiflora cincinnata is a native species to Brazil, cultivated in the North, Northeast
and Southeast regions of the country. It is also found in other countries such as Argentina,
Bolivia, Colombia, Paraguay, and Venezuela. This species is known as “maracujá-do-mato”
or “maracujá-da-caatinga” and it has been mainly exploited by rural families’cooperatives
in Bahia State (Northeast) in an extractive way. Its fruit is composed of 34% pulp, 26% seed
and 40% peel [5]. Thus, its processing can generate 66% residues. As Passiflora cincinnata
exhibits higher tolerance to water stress and pests when compared to other Passiflora species,
this has motivated the Brazilian Agricultural Research Corporation, Embrapa, to develop
cultivars with higher productivity and yield, and which contribute to the strengthening of
the passion fruit agro-industrial chain in Brazil [6]. Thus, an increase in the generation of
waste is envisioned, requiring studies that evaluate its potential in obtaining bioproducts
with higher added value. Herein, it is important to highlight that studies with the residue
of this species are still scarce in the literature, being restricted to the extraction of oil
from seeds.

The use of passion fruit seeds to obtain oil has been the subject of much research since
it represents a good way to add value to the agro chain of this fruit, as reported by Reis
et al. [7]. Authors obtained oil of Passiflora setacea, Passiflora alata, and Passiflora tenuifila with
increased oxidative stability by adding a hydroethanolic extract from fruit seeds. However,
an optimization study to recover antioxidant compounds from defatted seeds has not been
performed. Furthermore, both the composition of the extracts and the fatty acid profile of
the oils have not been evaluated.

Products based on passion fruit seed oil are commercialized with functional appeal,
which enhances its use and justifies the improvement of the extraction process for different
Passiflora species and the application of alternative technologies to retain the oxidative
stability of the oil and expand its use in the food and cosmetics industries [2,7].

Passion fruit seed oil contains polyunsaturated fatty acids, which are of interest to the
pharmaceutical, cosmetic, and food industries. Moreover, bioactive compounds, mainly
phenolics with antioxidant and anti-inflammatory properties, have been identified in oils
of various Passiflora species [8,9]. Passion fruit seed oil contains 60–70% unsaturated fatty
acids, consisting mainly of linoleic acid (C18:2), an essential fatty acid involved in cellular
functions and in the formation of other acids in human metabolism [10,11]. In this way, it
has a high nutritional value. On the other hand, linoleic acid is very susceptible to oxidation
due to the low oxidative stability of polyunsaturated fatty acids.

Microencapsulation by spray drying is an already consolidated technique in food
preservation and has been recently evaluated in the processing of edible oils. Due to its
flexibility, using a spray dryer for microencapsulation of oils shows advantages when
operating on a large scale. Additionally, the wall material used for emulsion prepara-
tion protects the encapsulated oil from light, oxygen, and moisture, for example [12,13].
In their previous study, Reis et al. [7] obtained antioxidant emulsions consisting of a
mixture of oils from different passion fruit seeds (Passiflora setacea, Passiflora alata, and
Passiflora tenuifila) and antioxidant extracts from their defatted seeds. Although these emul-
sions have shown higher oxidative stability when compared to pure oil, they are still very
susceptible to oxidation. Thus, the use of microencapsulation can guarantee the chemical
stability of both oil and antioxidant compounds. In addition to extending the shelf-life of
the obtained products, the elaborated powders take up less space during storage when
compared to liquid products such as emulsions and extracts, thus being a current approach
to obtain bioproducts from Passiflora cincinnata seeds [13]. To our knowledge, this approach
has not been evaluated for the biorefinery of seeds of this passion fruit species.

Therefore, the present work aimed to obtain bioproducts from passion fruit seeds
(P. cincinnata) by lipid extraction, recovery of antioxidant compounds from defatted seeds
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and microencapsulation of seeds oil with antioxidant extract, as well as to determine the
physical, chemical and biological properties of the obtained bioproducts.

2. Materials and Methods
2.1. Material

The seeds of P. cincinnata used in this work were obtained from fruits grown in
experimental fields of Embrapa Semiarid (Petrolina, Brazil) after depulping. Seeds were
stored at −20 ◦C until their processing. After thawing, the seeds were washed in a sieve
under running water to remove the arils. Then, they were autoclaved at 120 ◦C for 20 min
to reduce the microbial load.

2.2. Seeds Oil Extraction

The seeds were dried to reach about 10% moisture. After that, the raw material was
ground in a knife mill (MA-048, Marconi, Piracicaba, SP, Brazil). Crushed passion fruit
seeds were processed in continuous press (CA59G, Oekotec, Mönchengladbach, NRW,
Germany) to obtain the first-extraction crude oil decanted for 24 h in a dark cabinet. The
oil was centrifuged at 3000 rpm (CR22N, Hitachi Koki, Minato, Tokyo, Japan) for 15 min
to separate very fine particles. Then, the clarified seeds oil was stored at −20 ◦C until use,
and the pressed cake (defatted seeds) was reserved for antioxidant compound extraction.

The oil extraction yield was calculated from the ratio between the mass of oil recovered
by cold pressing (m) and the mass of oil extracted by Soxhlet (M).

Y (%) =
m
M
∗ 100 (1)

2.2.1. Fatty Acid Composition

The fatty acid composition of P. cincinnata seeds oil samples was analyzed using gas
chromatograph–mass spectrometry (GC–MS) (6890-5975, Agilent, Santa Clara, CA, USA).
Fatty acid methyl esters were prepared and analyzed in accordance with Jung et al. [14],
and the samples were injected into a Carbowax DB23 (60 m × 0.25 mm i.d. × 250 µm film)
column; helium as carrier gas flowed at 1 mL min−1. The inlet temperature was 230 ◦C,
the injection volume was 1 µL with a split ratio of 50:1, and the oven temperature was
200 ◦C for 40 min (isothermal). The transfer line temperature was 250 ◦C. The detected
compounds were identified by matching their mass spectra with the reference spectra in
the Willey7Nist05 library. The results were expressed in percentages based on the area of
the chromatogram peaks without correction.

2.2.2. Oxidative Stability

The oxidative stability of P. cincinnata seeds oil was measured using the Rancimat®

743 (743, Metrohm, Riverview, FL, USA) equipment, passing a stream of purified air of
10 L h−1 at 110 ◦C through the oil sample (3 g). Results were expressed as an induction
period representing a time interval until the sample reaches a high oxidation level.

2.3. Antioxidant Compound Recovery from Defatted Seeds

The P. cincinnata defatted seeds evaluated in the extraction of the antioxidant com-
pounds were ground in a knife mill coupled to a 1 mm diameter circular mesh sieve. A
rotational central composite design with eight factorials, six axials and three central points
was employed to select the best extraction parameters. The selected independent variables
were the concentration of ethanol (Pershy Chemical’s, São Gonçalo, RJ, Brazil) as solvent,
temperature, and solid–liquid ratio, according to Table 1. The temperature was limited to
74 ◦C to avoid loss of solvent. The extraction of antioxidant compounds was performed by
agitated solvent extraction, using 125 mL glass flasks properly covered and heated for 1 h
under constant stirring of 150 rpm, conditions based on preliminary studies and literature
data [15,16]. The experimental data were analyzed by response surface methodology using
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a second order polynomial equation. Analysis of variance (ANOVA) to test for the lack of
fit and coefficient of determination (R2) were used to verify the model’s significance.

Table 1. Total phenolic compounds content and antioxidant capacity of the hydroethanolic extract of
Passiflora cincinnata defatted seeds obtained under different experimental conditions.

Trials Temperature (◦C) Ethanol (%) Solid/Liquid Ratio
(g mL−1) TPC 1 ABTS•+ 2 DPPH• 2 FRAP 3

1 40 (−1) 30 (−1) 1:20 (−1) 845 ± 25 43 ± 2 111 ± 3 223 ± 8
2 40 (−1) 30 (−1) 1:50 (+1) 912 ± 31 51 ± 1 107 ± 5 216 ± 4
3 40 (−1) 80 (+1) 1:20 (−1) 1016 ± 27 64 ± 3 148 ± 6 284 ± 4
4 40 (−1) 80 (+1) 1:50 (+1) 1220 ± 25 69 ± 1 153 ± 6 304 ± 6
5 65 (+1) 30 (−1) 1:20 (−1) 1371 ± 57 80 ± 2 182 ± 8 395 ± 8
6 65 (+1) 30 (−1) 1:50 (+1) 1799 ± 119 105 ± 2 214 ± 12 462 ± 19
7 65 (+1) 80 (+1) 1:20 (−1) 1870 ± 35 114 ± 2 280 ± 11 567 ± 18
8 65 (+1) 80 (+1) 1:50 (+1) 2302 ± 31 130 ± 2 292 ± 10 614 ± 17
9 32 (−1.68) 55 (0) 1:35 (0) 991 ± 42 63 ± 4 128 ± 7 303 ± 6
10 74 (+1.68) 55 (0) 1:35 (0) 2538 ± 141 178 ± 6 370 ± 20 795 ± 5
11 53 (0) 13 (−1.68) 1:35 (0) 720 ± 18 45 ± 1 92 ± 5 211 ± 2
12 53 (0) 97 (+1.68) 1:35 (0) 377 ± 17 21 ± 1 41 ± 0 103 ± 1
13 53 (0) 55 (0) 1:10 (−1.68) 1451 ± 69 99 ± 4 210 ± 5 474 ± 17
14 53 (0) 55 (0) 1:60 (+1.68) 1809 ± 80 111 ± 8 226 ± 5 462 ± 16
15 53 (0) 55 (0) 1:35 (0) 1810 ± 124 121 ± 1 235 ± 1 515 ± 6
16 53 (0) 55 (0) 1:35 (0) 1616 ± 57 117 ± 1 222 ± 4 527 ± 1
17 53 (0) 55 (0) 1:35 (0) 1637 ± 64 110 ± 3 234 ± 3 504 ± 3

The coded values of the independent variables are in parentheses. Results expressed as mean± standard deviation
(coefficient of variation < 10%). TPC—Total phenolic compounds; 1 Results expressed as mg GAE 100 g−1 of
sample; 2 Results expressed as µmol Troloxg−1 of sample; 3 Results expressed as µmol Fe2+ g−1 of sample.

To determine the best condition for extraction of the antioxidant compounds from
P. cincinnata defatted seeds, the technique of simultaneous optimization of independent
variables (desirability) was used. The desirability function is based on the conversion of
each response in an individual desirability (d). After that, they were combined into an
overall desirability (D), using the geometric mean. The D value ranges from zero (0) to one
(1), in which the value of 1 corresponds to the most desirable response [17]. Under the best
operational condition, more assays were performed and observed results were compared
with those predicted in order to validate the chosen operational condition.

2.3.1. Total Phenolic Content

Total phenolic content (TPC) was measured according to the method described by
Singleton and Rossi [18]. For the assays, 250 µL of each diluted sample was mixed with
1250 µL of 10% Folin–Ciocalteu reagent (Imbralab, Ribeirão Preto, Brazil) for 2 min after
1000 µL of sodium carbonate solution (7.5% w/v–Dinâmica, Indaiatuba, Brazil) was added.
The mixture was incubated for 15 min at 50 ◦C. Then, the absorbance was measured at
760 nm in a spectrophotometer (5100, Metash, Songjiang District, Shanghai China) vs. a
blank prepared with distilled water. Gallic acid (Sigma-Aldrich, Saint Louis, MO, USA)
was used as a standard, and the results were expressed as mg gallic acid equivalents per
100 g of sample (mg GAE 100 g−1).

2.3.2. Evaluation of the Antioxidant Capacity

• ABTS•+

The ABTS•+ antiradical activity (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid-
Sigma-Aldrich, Saint Louis, MO, USA) was determined according to methodology reported
by Gião et al. [19]. For the reactions, 30 µL of each sample was added to 3 mL of ABTS•+.
The absorbance was measured at 734 nm in a spectrophotometer (5100, Metash, Songjiang
District, Shanghai, China) after 6 min of reaction, using ultra-pure water as blank. The
results were expressed as µmol of Trolox g−1of sample (Sigma-Aldrich, Buchs, Switzerland).
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• DPPH•

The DPPH• radical (Sigma-Aldrich, Steinheim, Germany) scavenging activity was
determined according to Hidalgo et al. [20]. Briefly, 100 µL of each sample was added to
2.9 mL of DPPH• solution (6× 10−5 M in methanol–Vetec, Rio de Janeiro, Brazil) for 30 min.
The absorbance was measured in a spectrophotometer (5100, Metash, Songjiang District,
Shanghai, China) at 517 nm using methanol as a blank. The DPPH• radical scavenging
activity was calculated using Trolox solution (Sigma-Aldrich, Buchs, Switzerland) as a
standard, and the results were expressed as µmol of Trolox g−1 of sample.

• Ferric reducing/antioxidant power (FRAP)

The FRAP assay was performed according to Benzie and Strain [21] with slight modi-
fications. Briefly, three stock solutions were made, 300 mM acetate buffer (pH 3.6), 10 mM
TPTZ (Sigma-Aldrich, Buchs, Switzerland) in 40 mM HCl (Isofar, Duque de Caxias, Brazil)
and 20 mM FeCl3 (Neon, São Paulo, Brazil); for the analysis 25 mL of acetate buffer, 2.5 mL
of TPTZ solution, and 2.5 mL of FeCl3 were mixed. Then, 100 µL of each sample was reacted
with 3 mL of FRAP at 37 ◦C for 30 min. The absorbance was measured in a spectropho-
tometer (5100, Metash, Songjiang District, Shanghai, China) at 593 nm using ultra-pure
water as a blank. The ferric ion reducing ability was calculated using FeSO4·7H2O (CRQ,
Diadema, Brazil) as standard, and the results were expressed as µmol Fe2+ g−1of sample.

2.3.3. BiocompoundsProfile by UPLC–MS/MS

The defatted seeds extract was analyzed by UPLC–MS/MS using a Nexera UFLC system
(Shimadzu) coupled to a high-resolution mass spectrometer with electron spray ionization
(ESI), QTOF–MS Impact (Bruker, Billerica, MA, USA). A 1 µL sample (5 mg mL−1-HPLC
grade methanol, Tedia, São Paulo, Brazil) was injected into an Acquity BEH C18 col-
umn (100 mm × 2.1 mm i.d., 1.7 µm particle size) at 40 ◦C with a constant flow rate of
0.3 mL min−1. Mobile phases A (0.1% formic acid in ultrapure water, MilliQ, Merck, Darm-
stadt, Germany) and B (acetonitrile with 0.1% formic acid) were used in a gradient elution
system as follows: the eluent was maintained at 5% B for the first 5 min, followed by a
gradient from 5 to 100% B until 39 min, and maintained at 100% B until 44 min. Mass
spectra were acquired in positive and negative ion modes, and the analyte was monitored
in the m/z range of 100 to 2000.

The ion source parameters were adjusted under the following conditions: capil-
lary voltage of 4500 V, nebulizer gas pressure of 4.0 bar, desolvation gas flow rate of
10.0 L min−1, transfer capillary temperature at 200 ◦C, and an entrance voltage of −500 V
applied to the spectrometer (end plate offset). MS2 spectra were acquired in auto MS/MS
mode. Data processing was performed using Data Analysis 4.2 software (Bruker). Com-
pound analysis was performed considering the pseudomolecular ion (negative or positive)
and mass fragmentation pattern (MS2) in manual dereplication and/or comparison with
databases (MassBank).

2.3.4. Antimicrobial Assay

In this set of experiments, Gram-negative (Acinetobacter baumannii ATCC 19606,
Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and Pseudomonas aerug-
inosa ATCC 27853) and Gram-positive (Staphylococcus aureus ATCC 29213, Staphylococcus
epidermidis ATCC 12228 and Bacillus subtilis 168 LMD 74.6) bacteria were grown in Mueller–
Hinton agar (Difco, Franklin Lakes, NJ, USA) for 24 h at 35 ± 2 ◦C. Sabouraud–dextrose
agar (Difco, Franklin Lakes, NJ, USA) was used for the cultivation of yeasts, Candida al-
bicans ATCC 90028 and Candida tropicalis ATCC 750 for 24 h at 35 ± 2 ◦C. Antimicrobial
activity was evaluated using the broth microdilution method with 96-well polystyrene
plates, standardized according to documents M07-A9 (for bacterial assays) and M27-A3
(for fungal assays). To determine the minimum bactericidal and fungicidal concentration
(MBC and MFC, respectively), 10 µL of the wells that had no visible microbial growth
were inoculated in Mueller–Hinton culture medium and Sabouraud-dextrose Agar for 24 h
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at 37 ◦C. The MBC and MFC were considered to be the lowest concentration capable of
completely inhibiting microbial growth on the agar surface. To eliminate the interference
of ethanol in the results, the hydroalcoholic antioxidant extract was subjected to vacuum
evaporation. The results were expressed as mg GAE mL−1 of ethanol-free extract.

2.4. Microencapsulation by Spray Dryer

To evaluate the properties of the microparticles obtained by spray drying, the assays
were carried out with three different formulations: (i) oil dispersed in the aqueous phase
containing wall material (ii) a mixture of oil and defatted seeds’ ethanol-free antioxidant
extract dispersed in the aqueous phase containing wall material and (iii) wall material
dispersed in the aqueous phase only.

An oil-in-water emulsion was prepared using 7.5% pressed oil, 7.5% maltodextrin
(10DE, MOR-REX 1910, Ingredion, São Paulo, SP, Brazil) and 22.5% modified starch
(Capsul®06560101CE, Ingredion, São Paulo, SP, Brazil). Modified starch and maltodextrin
10DE were used as wall material in the ratio of 3:1 (w/w), respectively. The emulsion was
homogenized in a blender for 2 min. These operational conditions were adapted from
James et al. [22].

The spray dryer was operated under the following conditions: chamber inlet tempera-
ture and air velocity of 170 ◦C and 3 m s−1, respectively, emulsion inlet flow rate of 485 mL
h−1 and 0.7 mm diameter atomization nozzle.

2.4.1. Microparticles’ Oxidative Stability

The oxidative stability of microparticles was measured using a Rancimat® 743 (743,
Metrohm, USA), by passing a stream of purified air of 10 L h−1 at 110 ◦C through the oil
sample (3 g). Results were expressed as an induction period representing a time interval
until the sample reaches a high oxidation level.

2.4.2. X-ray Diffraction

X-ray diffraction (XDR) was performed using a diffractometer (Miniflex, Rigaku,
Japan). Samples of the wall material, microencapsulated oil, containing antioxidant extract
from defatted seeds or not, were directly analyzed using the equipment. Cu Kα radiation
was employed with 2θ ranging from 10◦ to 80◦, with a scan speed of 0.06◦ 2θ s−1.

2.4.3. Morphology of Microparticles

The morphology of microparticles was analyzed by scanning electron microscopy
(SEM) (TM303 plus, Hitachi, Japan). The powder samples were mounted on a specimen
holder using double scotch tape under vacuum. The microscope was operated at 15 kV.

2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)

The analysis of the chemical structures was performed by FTIR (Nexus 470, Themo
Nicolet, USA). The sample powder was blended with spectroscopy-grade KBr (Vetec, Rio
de Janeiro, Brazil) and pressed into pellets, and the oil was dripped in a KBr window.
The FTIR spectrum of samples was measured from 4000 to 400 cm−1, with a resolution of
4 cm−1 and 32 accumulations.

2.4.5. Particle Size

A particle size analyzer was used to determine the size distribution of microparti-
cles using laser diffraction (1064, Cilas, France) coupled with ultrasound to increase the
dispersibility of the sample. A small amount of powder was suspended in isopropanol
and submitted to five particle size distribution readings. The spread of particle sizes was
calculated as the scattering according to Equation (2):

span =

(
D90 − D10

D50

)
(2)



Foods 2023, 12, 2525 7 of 18

where D10, D50, D90 are defined as diameters corresponding to the 10, 50, and 90% cumula-
tive volumes, respectively. The results were expressed in micrometers.

2.4.6. Moisture Content

The moisture content of microparticles was determined by the gravimetric method at
105 ◦C. The results were expressed as a percentage [23].

2.4.7. Hygroscopicity

Hygroscopicity was determined according to Cai and Corke [24]. Approximately
1 g of sample was placed at 25 ± 2 ◦C in a desiccator with a saturated NaCl solution
(73% relative humidity), and the weight gain due to moisture absorption was measured
after one week. The results were expressed in absorbed moisture percentage.

2.4.8. Solubility

The solubility of the microparticles in water was evaluated according to Cano-Chauca
et al. [25]. One gram of sample was added to a beaker containing 100 mL distilled water;
which was stirred at high speed for 5 min, followed by centrifugation at 3000× g for 15 min.
After that, a 25 mL aliquot of the supernatant was dried at 105 ◦C until constant weight.
The solubility was calculated by the weight difference and expressed as a percentage.

2.5. Statistical Analysis

All analytical determinations were carried out at least in triplicate, except the RANCI-
MAT and the UPLC-MS/MS trials. Analysis of variance (ANOVA) followed by Fisher’s
LSD test was performed using Statistica® v.13.0.

3. Results and Discussion
3.1. Oil Extraction and Characterization
3.1.1. Yield

The oil content obtained in a lipid extractor using petroleum ether as solvent was
about 15%. This result was used as the basis for calculating the efficiency of the process.
Lopes et al. [26] found values between 16.7 and 19.2% for lipid content of P. cincinnata seeds.
The trials were performed with fruits from different accessions, and the oil extraction was
conducted in a lipid extractor after moisture removal. The lipid content in P. cincinnata
was significantly different compared to other passion fruit species. The value obtained
was lower when compared with data reported by De Paula et al. [27] for P. setacea (31 to
34% of oil/93% efficiency of pressing) and P. alata (23% of oil/84% efficiency of pressing)
species. Extraction of P. cincinnata seeds oil by pressing showed an efficiency of 79%, using
seeds with 11% moisture content. The moisture content was selected from preliminary
experiments and literature data [28].

3.1.2. Fatty Acid Profile

The fatty acid profile of P. cincinnata seeds oil is shown in Table 2. The seeds oil is
rich in unsaturated fatty acids, represented mainly by linoleic acid. The observed profile is
similar to those reported in the literature by Araujo et al. [5] and Lopes et al. [26]. Linoleic
acid is an essential fatty acid since human metabolism does not synthesize it. Therefore,
it must be obtained through food intake. It is important to stress that the consumption
of polyunsaturated fatty acids may decrease the risk of developing cardiovascular dis-
eases [29]. However, due to the unsaturation in their structure, polyunsaturated fatty acids
are very susceptible to oxidation.
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Table 2. Fatty acid profile of Passiflora cincinnata seeds oil expressed as percentage (%).

Fatty Acids Present Work Lopes et al. [25] Araújo et al. [5]

Palmitic (C16:0) 12.14 ± 1.00 10.2 9.2
Stearic (C 18:0) 1.09 ± 0.26 2.9 3.0
Oleic (C 18:1) 8.43 ± 1.32 11.3 15.4

Linoleic (C 18:2) 78.34 ± 2.22 74.3 70.3
Linolenic (C 18:3) - 0.6 0.6

3.2. Antioxidant Compound Recovery from Defatted Seeds
3.2.1. Evaluation of the Extraction Process

The TPC content and antioxidant capacity of extracts from P. cincinnata defatted
seeds are shown in Table 1. Trial 10 performed at 74 ◦C, 55% ethanol as solvent, and
1:35 g mL−1 solid–liquid ratio, presented the highest values for TPC, ABTS•+, DPPH•, and
FRAP
(2538 mg GAE 100 g−1 of sample, 178 µmol Trolox g−1 of sample, 370 µmol Trolox g−1 of
sample, and 795 µmol Fe2+ g−1 of sample, respectively). The lowest values were found in
trial 12 at 53 ◦C, 97% ethanol in the same solid–liquid ratio (377 mg GAE 100 g−1of sample,
21 µmol Trolox g−1 of sample, 41 µmol Trolox g−1 of sample, 103 µmol Fe2+ g−1 of sample,
respectively). Thus, the results obtained in trial 10 were 6.7, 8.5, 9 and 7.7 times higher
than those observed in trial 12, showing that the responses were strongly influenced by
temperature and the percentage of ethanol employed in the extraction. Additionally, as can
be seen in Table S1, the results of the experimental design showed a positive correlation
(p < 0.05), indicating that the increase in the concentration of total phenolic compounds
produces an extract with higher antioxidant capacity as measured by different methods.

The temperature was the most relevant parameter, as shown in the Pareto diagram
(Figure 1). Its linear effect was significant and positive. In this way, higher temperatures
favor the solubility of phenolic compounds and decrease the viscosity of the extraction
system, leading to a better extraction yield [16,30]. Notably, this behavior was also ob-
served for the antioxidant capacity of the extracts regardless of the method used (Table 1,
Figure S1).
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Figure 1. Influence of the independent variables on the total phenolic compounds in the extract of
Passiflora cincinnata defatted seeds.

Leal et al. [31] obtained extract of P. cincinnata seeds with a total phenolic content of
about 2528 mg mg GAE 100 g−1, when the assays were conducted at room temperature, 95%
ethanol, for 72 h. In the current study, the value found at 74◦C, 55% ethanol, solid–liquid
ratio of 1:35 for 1 h was similar (2538 mg mg GAE 100 g−1 100 g−1 of sample). However,
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the selected operational conditions present as advantages a shorter extraction time and a
lower ethanol concentration in the extraction solution.

Table 1 shows that extraction solutions with intermediate polarity (between 55 to 80%
ethanol) were more suitable for extracting antioxidant compounds from defatted seeds.
This occurs as a function of the polarity of the recovered compounds. The quadratic effect of
this factor was significant (Figure 1), corroborating that there is a maximum value of ethanol
concentration which promotes higher attainment of phenolic compounds and improves
the antioxidant capacity of the extracts, which can also be seen in the Pareto diagrams for
ABTS•+, DPPH• and FRAP assays (Figure S1). Shi et al. [32], when extracting phenolic
compounds from grape seeds, reported that the best ethanol concentration in the extraction
solution was between 55% and 65%. Alcântara et al. [33] evaluated the extraction of phenolic
compounds in chia seeds using water, ethanol and acetone in different proportions. In
this study, the authors observed that the polarity of the extraction solution significantly
influenced the recovery of phenolic compounds. The best solvent mixture was prepared
with 17% water, 17% ethanol and 66% acetone.

The solid–liquid ratio was significant for TPC and FRAP responses (Figures 1 and S1).
However, this factor made a low contribution to the results. From Table 1, it is possible to
verify that results obtained by varying only the solid–liquid ratio, as in the trials 1 and 2,
3 and 4, 5 and 6, 7 and 8 and 13 and 14, the increment in the total phenolic compounds
concentration ranged from 1.1 to 1.3 times only (trials 1 and 2; 5 and 6).

All models were significant for predicting the behavior of the responses in rela-
tion to the independent variables, as the calculated F-values were higher than the listed
F-values (F9,7 = 3.68) at p = 0.05. The calculated F-values for TPC, ABTS•+, DPPH• and
FRAP responses were 10.2, 11.3, 8.5, and 11.8, respectively. However, some lack of fit was
observed for DPPH• and FRAP responses as it showed p-value < 0.05, and the calculated
F-values were lower than the listed F-value for this parameter. The R2 values of the fitted
models were 0.93, 0.94, 0.91, 0.94 for TPC, ABTS•+, DPPH• and FRAP responses, respec-
tively, showing that the models accounted for at least 91% of data variability obtained by
this experimental design. The R2 of the adjusted models was superior to 0.81, reinforcing
the good fit of the data, although the DPPH• and FRAP responses have shown some lack
of fit. As can be seen in Figure S2, which describe the values observed and those predicted,
there is a good agreement between them, making it possible to use these responses to
choose the best operational condition to recover antioxidant compounds from the residue.

The desirability tool was employed to obtain the best operational condition for recov-
ering antioxidant compounds from defatted seeds. In this case, the overall desirability was
0.9985 (Figure 2); the closer to 1, the more statistically reliable the result. It indicated as
the best operational condition 74 ◦C, 58% hydroethanolic solution and a solid–liquid ratio
of 1:54. However, in order to save solvent in the process, we selected a solid–liquid ratio
lower than that estimated by the statistical tool (1:54), since a solid–liquid ratio higher than
1:48 does not significantly increase the recovery of antioxidant compounds from residue. In
the interval of the present work (1:48–1:60/Figure 2), there was no significant increase in
the recovery of antioxidant compounds from defatted seeds that would justify the increase
in solvent in the process. Therefore, the solid–liquid ratio of 1:48 was adopted in the
current study. Thus, the antioxidant compound-rich extract constitutes another bioproduct
obtained from the P. cincinnata seeds.

In this operational condition, observed values of TPC (2868 mg GAE 100 g−1 of sample)
and antioxidant capacity by ABTS•+ (195 µmol Trolox g−1 of sample), DPPH• (368 µmol
Trolox g−1 of sample), and FRAP assays (694 µmol Fe2+ g−1 of sample) were close to
the predicted values by the models as follows: TPC (2952 mg GAE 100 g−1 of sample)
and antioxidant capacity by ABTS•+ (177 µmol Trolox g−1 of sample), DPPH• (383 µmol
Trolox g−1 of sample) and FRAP assays (795 µmol Fe2+ g−1 of sample) with coefficients of
variation less than 10%. The dataset reinforces the operational condition selected for the
recovery of antioxidant compounds from P. cincinnata defatted seeds.
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3.2.2. Biocompound Profile

The chemical composition of the crude extract from P. cincinnata seeds was analyzed
by UPLC–MS/MS (Table 3). The compound identification was performed by manual
dereplication, allowing the putative annotation of eight new lignans in the genus Passiflora
(1–8). The base peak chromatographic profile in negative ionization mode can be seen in
Figure 3. The MS/MS fragmentation spectra of the major compounds showed the main
product ions m/z 165, m/z 147 and m/z 135, suggesting the presence of lignans analogous
to secoisolariciresinol and berchemol [34,35]. These two compounds have already been
described in the genus Passiflora [36,37]. The MS/MS data, combined with the exact mass
data of the pseudomolecular ions [M − H]− suggested 3-demethoxy derived compounds.

The main fragment m/z 165 (C9H9O3
−) results from the cleavage of the C8-C8′-carbon,

followed by loss of CH4. The two major lignans (m/z 327.1280 and m/z 329.1437) were
identified as tetrahydrofuranolignans (2 and 3). The other six lignans comprise glycosylated
structures, including one tetrahydrofurano lignan (1) and five butanediol lignans (4–8). In
addition to lignans, two glycosylated flavonoids were identified in positive ionization mode.
Comparison with MS/MS fragmentation databases allowed the annotation of isovitexin
2′′-O-arabinoside (9, m/z 565.1555, [M + H]+) and adonivernith (10, m/z 581.1507, [M + H]+)
(Figure 4). The elimination of 132 e 252 u revealed the pentose and hexose moiety; however,
the glycan stereochemistry could not be determined by LC–MS. Different glycosylated
flavonoids have already been reported for P. cincinnata [31]. All the annotated compounds
have phenolic hydroxyl groups which may contribute to the antioxidant capacity of the
extract [38].
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Table 3. Compounds annotated by UPLC–MS/MS (ESI positive and negative modes) in Passiflora
cincinnata defatted seeds extract.

Compound Name TR (min) Molecular
Formula Adduct Ion Experimental m/z Main MS2Fragment Ions Relative

Percentage (%)

3-demethoxy-8-dehydroxy-berchemol
4-O-glucoside (1) 11.8 C25H32O10 [M − H]− 491.2162 165.0786, 147.0655,

135.0650 5.9

3-demethoxy-8-dehydroxy-berchemol (2) 13.2 C19H22O5 [M − H]− 329.1431
165.0793, 147.0660,
146.0572, 135.0659,

129.0540
10.7

2-(1,3-benzodioxol-5-yl)tetrahydro-4-[(4-
hydroxyphenyl)methyl]-3-furanmethanol (3) 14.8 C19H20O5 [M − H]− 327.1280 163.0624, 162.0538,

147.0657, 135.0649, 8.5

Secoisolariciresinol 4-O-xylopyranoside (4) 15.0 C25H34O10 [M − H]− 493.2113
329.1427, 299.1287,
179.0591, 165.0777,
147.0656, 137.0443

10.6

3-demethoxy-secoisolariciresinol
4-O-glucoside (5) 15.5 C25H34O10 [M − H]− 493.2108

329.1429, 299.1292,
165.0779, 147.0661,

137.0445
9.8

2-methoxy-bisdemethoxy-
secoisolariciresinol 4-O-glucoside (6) 16.0 C25H34O10 [M − H]− 493.2107 165.0781, 147.0658,

135.0650 4.9

2′-methoxy-bisdemethoxy-
secoisolariciresinol 4-O-glucoside (7) 16.5 C25H34O10 [M − H]− 493.2102 165.0780, 147.0657,

135.0651 2.6

3-demethoxy-secoisolariciresinol
4-O-glucosil glucoside

(8)
14.8 C31H44O15 [M − H]− 655.2615 165.0778, 163.0622,

162.0543 7.2

Isovitexin 2′′-O-arabinoside (9) 11.5 C26H28O14 [M + H]+ 565.1555
283.0595, 313.0702,
397.0917, 415.1010,

433.1253
<0.5

Adonivernith (10) 10.8 C26H28O15 [M + H]+ 581.1507
299.0564, 329.0659,
413.0844, 431.1016,

449.1073
<0.5
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Figure 3. Base peak chromatogram (UPLC–MS/MS) in negative ionization mode of Passiflora cincinnata
defatted seeds extract and the respective lignans (1–7) annotated for base peaks. The diglycosylated
lignan 8 (Figure 4) is overlapped with the major ion signal at m/z 327.1280.
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3.2.3. Antimicrobial Action

The antimicrobial activity of the P. cincinnata defatted seeds extract (obtained in better
conditions) was tested against various microorganisms, including yeasts and both Gram-
positive and Gram-negative bacteria (Table 4). Initially, we performed the MIC assay.
However, the extract interfered with the reading due to its high turbidity. Based on this, we
decided to plate 10 µL of each system (untreated and treated with different concentrations
of the extract) onto the surface of solid media to observe the bactericidal (MBC)/fungicidal
(MFC) effects. The results showed that the P. cincinnata defatted seeds extract exhibited
bactericidal effects against all tested Gram-positive bacteria (S. aureus, S. epidermidis and
B. subtilis), with MBC values ranging from 0.302 to 0.602 mg GAE mL−1 (Table 4). The
extract also inhibited the growth of Gram-negative bacteria, except for P. aeruginosa, with
an MBC value of 0.602 mg GAE mL−1, while the growth of fungal cells was not affected by
the extract under the employed experimental conditions.

Table 4. Antimicrobial activity of Passiflora cincinnata defatted seeds extract.

Microorganisms MBC/MFC [mg GAE mL−1] a

Gram-positive bacteria
Bacillus subtilis 168 LMD 74.6 0.602

Staphylococcus aureus ATCC 29213 0.302
Staphylococcus epidermidis ATCC 12228 0.302

Gram-negative bacteria
Acinetobacter baumannii ATCC 19606 0.602

Escherichia coli ATCC 25922 0.602
Klebsiella pneumoniae ATCC13883 0.602

Psedomonas aeruginosa ATCC 27853 ND

Fungi
Candida albicans ATCC 90028 ND
Candida tropicalis ATCC 750 ND

ND—not determined. a Results expressed as mg gallic acid equivalent/mL of ethanol-free extract. MBC—minimum
bactericidal concentration. MFC—minimal fungicidal concentration.

Several studies have attributed the inhibitory effect of seed extracts against different
bacteria to their phenolic compounds [15]. These compounds have the ability to bind with
the bacterial cell wall and then inhibit bacterial growth. Additionally, phenolic compounds
may precipitate proteins and inhibit the enzymes of microorganisms. Siebra et al. [3]
studied the effect of a hydroethanolic extract of different parts of P. cincinnata Mast against
S. aureus and E. coli and did not observe antimicrobial activity. However, the authors
combined the extract of each part with an antimicrobial to reduce the resistance of these
microorganisms to the antibiotics, and the results were successful for this type of application.
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The antibacterial activity observed in the current work may be related to the phytochemical
profile of the extract, as revealed by LC–MS/MS (lignan-rich) (Table 3) [39].

3.3. Microparticle Characterization
3.3.1. Oxidative Stability of Oil Microparticles

The induction times of P. cincinnata pure oil and microencapsulated P. cincinnata oil
with and without antioxidant extract are shown in Table 5. An oxidative stability of 5.37 h
for pure oil was found. This value falls within the range reported by Reis et al. [7], who
evaluated the oxidative stability of Passiflora species seeds oils recovered by continuous
pressing, including P. alata, P. tenuifila, and P. setacea (3.5–7.3 h). These values are typical for
passion fruit seeds oils, which are rich in polyunsaturated fatty acids.

Table 5. Induction time of P. cincinnata seeds oil and its microparticles.

Samples Induction Time (Hours)

Pure oil 5.37± 0.18 b

Oil + antioxidant extract microencapsulated 6.97± 0.73 a

Oil microencapsulated 5.27± 0.53 b

Different letters indicate significant differences.

It can also be observed that pure oil had oxidative stability increased by about 30%
when it was microencapsulated after addition of the antioxidant extract. These results
confirm the positive effects of bioactive compounds contained in defatted seeds on the
oxidative stability of the microparticles, acting together with the wall material to protect
the nutritional and chemical quality of the P. cincinnata seeds oil. It is essential to highlight
that oil microparticles, with added (or not) antioxidant compounds from defatted seeds,
are bioproducts of interest for the food and pharmaceutical industries. Therefore, their
preparation can add value to the Brazilian passion fruit agro chain.

3.3.2. DRX

Figure 5 shows the diffractograms obtained for the wall material and P. cincinnata oil
microencapsulated with and without antioxidant extract.
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microparticles containing Passiflora cincinnata seeds oil and antioxidant extract (gray); microparticles
of wall material only (blue).

An amorphous profile was observed for all samples, with non-crystalline character,
with only one characteristic signal near 20◦. This verifies that incorporating P. cincinnata
seeds oil and antioxidant extract in the microparticles did not influence the amorphous
character typical of polysaccharides [40]. According to Pereira et al. [40], amorphous
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systems are better for microencapsulation, as they can form a glassy structure by removing
water. Additionally, these systems dissolve more easily than those that contain crystalline
components since the dissolution of the crystals occurs only on the surface exposed to the
solvent. Microparticles of fish oil encapsulated with inulin, isolated whey protein, and
maltodextrin by Botrel et al. [41] also exhibited an amorphous structure with a minimum
of organization, based on the occurrence of significant diffuse peaks near 20◦.

3.3.3. Morphology and Particle Size

As shown in Figure 6, most microparticles were spherical without cracks or fissures,
ensuring better protection of the bioactive compounds (oil and phenolic compounds).
Particle size distribution at different feed compositions is shown in Table 6. In general,
adding antioxidant extract to feed emulsions resulted in the largest particle size (p < 0.05),
although the distribution was more homogeneous (lowest span values, p < 0.05). The
microparticles formed by emulsions containing oil and wall material and those containing
only wall material were smaller and more heterogeneous than microparticles from emul-
sions containing oil, antioxidant compounds and wall material. This can be explained as a
function of the emulsion’s viscosity. More viscous emulsions give rise to larger droplets,
favoring obtaining larger microparticles. This pattern was also reported by Tonon et al. [42],
when evaluating the effect of air temperature and feed composition on the particle size
distribution of flaxseed oil microparticles.
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Table 6. Particle size parameters and moisture, hygroscopicity and solubility values of Passiflora
cincinnata seeds oil microparticles.

Samples
Average

Particle Size
(µm)

Span
Value

Moisture
(%) Hygroscopicity (%) Solubility (%)

Oil, phenolic extract and wall
material microencapsulated 20.63 ±0.81 b 1.46 ±0.11 b 4.83 ±0.13 b 7.17 ± 0.10 b 76.97 ±0.21 a

Oil and wall material
microencapsulated 16.40 ±0.54 a 2.37 ±0.16 a 4.10 ±0.06 c 7.53 ±0.04 b 77.03 ±0.36 a

Wall material microencapsulated 15.50 ±0.05 a 2.22 ±0.06 a 6.16 ±0.12 a 10.75 ±0.77 a 72.87 ±1.74 b

Different letters in the same column indicate significant differences.
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3.3.4. FTIR

The absorption spectra from FTIR analysis of pure P. cincinnata seeds oil, oil micropar-
ticles with and without antioxidant extract and wall material are shown in Figure 7. The
P. cincinnata seeds oil spectra revealed a strong vibrational mode associated with 3009 cm−1

which referred to C-H sp2 stretching, and intense bands at 2854 and 2925 cm−1 which were
attributed to the symmetric and asymmetric axial deformation (stretching) of C-H bonds
of the methyl (CH3) and methylene (CH2) of the fatty acid in triacylglycerol. The band
at 1747 cm−1 corresponds to vibrations of stretching of the C=O group. The band near
1163 cm−1 corresponds to the C-O ester group. Bands at 1667–1640 cm−1 can be assigned
to overlapping of the olefinic C=C stretching and O-H (water). The wall material presents a
prominent band at 3384 cm−1 related to stretching O-H. The phenolic compounds were in
small quantities, so they could not be identified in the analysis, which may be due to the
overlapping of their characteristic bands common to other substances in the formulation.
However, they were confirmed by LC–MS analysis (Table 3). The absorption spectra for
microencapsulated samples, the broad band between 3650 and 3100 cm−1 was observed
and refers to the wall material used. The characteristic signals of the P. cincinnata seeds
oil was also observed, characterizing its incorporation throughout the structure of the
microparticles. The signals observed were the stretching band of saturated alkanes near
2925 cm−1, and carbonyls groups near 1747 cm−1, confirming the presence of fatty acids
esters. The absorption band at 720 cm−1 is attributed to the symmetric stretching vibration
of (CH2)n groups of n greater than four, indicating the presence of long hydrocarbon linear
chains from P. cincinnata seeds oil. Thus, the incorporation of the oil into the microparticles
can be inferred, given its presence being confirmed by the characteristic peaks of the oil in
the absorption spectrum of the microparticles [43,44].
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3.3.5. Moisture, Solubility and Hygroscopicity

The moisture, solubility and hygroscopicity of P. cincinnata seeds oil microparticles
are presented in Table 6. The moisture values ranged from 4.10% to 6.16%. Moisture
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data are essential since high moisture could favor microparticle oxidation and reduce
their stability. Hijo et al. [45] reported that for dry products such as microparticles used
in the food industry, the ideal moisture range is between 3 and 4%, where deterioration
by microorganisms is reduced. Drying operational conditions, soluble solid content, and
oil concentration influence microparticles’ moisture, which explains the data observed in
the present work. In this way, the mixture containing wall material and water forms a
more hygroscopic solution when compared to oil/water/wall material emulsions with or
without the addition of the antioxidant extract. Thus, the probability of the microparticles
containing only the wall material, retaining more water during the process is higher, as
they tend to come into equilibrium with the ambient humidity more easily.

The hygroscopicity values of the microparticles ranges from 7.17 to 10.75% (Table 6).
As oil and water are immiscible, the oil microparticles presented smaller hygroscopicity
values than those from wall material–water mixture. According to Nurhadi et al. [46],
microparticles with hygroscopicity higher than 20% can be considered very hygroscopic;
therefore, they are not stable, being more susceptible to water absorption and, to the
stickiness of the material and oxidation of the target compounds [13].

The solubility was higher than 76% for oil microparticles with or without antioxidant
compounds (Table 6). The addition of antioxidant extract did not affect the solubility of
samples (p < 0.05). These results are according to de Oliveira et al. [15], who elaborated
microparticles of buriti oil by freeze–drying using carbohydrates as wall material, whose
highest value reported was 71%. Botrel et al. [41] reported 79% solubility for microparticles
of fish oil atomized in spray dried using different wall materials, where the microparticles
were found to have good solubility. In this way, P. cincinnata seeds oil microparticles
demonstrate good solubility in water and, therefore, have potential for application in
aqueous systems.

4. Conclusions

This study was successful in obtaining P. cincinnata seeds oil by pressing and recov-
ering antioxidant compounds from the defatted seeds. The best operational conditionsto
obtain an antioxidant extract of defatted seeds was 74 ◦C, 58% ethanol as solvent, and a
solid–liquid ratio of 1:48. The main compounds identified by UPLC MS–MS in the extract
were lignans that may contribute to antioxidant and antimicrobial activities. The microen-
capsulation was adequate to preserve P. cincinnata oil, and the addition of antioxidant
extract proved to be a great method to increase the oxidative stability. Thus, the present
work may contribute to adding value to the Brazilian Caatinga passion fruit agro chain
by obtaining three bioproducts: pure oil, antioxidant extract and oil microparticles with
antioxidant extract.
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