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An ever-growing collection of commercial biostimulants is becoming available in

a wide variety of forms and compositions to improve crop performance. Given

the intricate nature of deciphering the underlying mechanisms of commercial

products, which typically comprise various biological components, it is crucial

for research in this area to have robust tools to demonstrate their effectiveness in

field trials. Here, we took a multi-attribute approach to evaluating the impact of

biostimulants on crop performance. First, we assessed the impact of a

biostimulant on the soil and rhizosphere microbiomes associated to crops in

eight reference farms, including corn (3 farms), soybean (2), cotton (2) and

sugarcane (1), in different biomes and production contexts in Brazil and Paraguay.

Second, we modeled a set of integrated indicators to measure crop responses to

biostimulant application, including five analytical themes as follows: i) crop

development and production (9 indicators), ii) soil chemistry (9), iii) soil physics

(5), iv) soil biology (6) and v) plant health (10). Amplicon 16S rRNA and ITS

sequencing revealed that the use of the biostimulant consistently changes the

structure of bacterial and fungal communities associated with the production

system for all evaluated crops. In the rhizosphere samples, the most responsive

bacterial taxa to biostimulant application were Prevotella in cotton; Prauserella

and Methylovirgula in corn; and Methylocapsa in sugar cane. The most

responsive fungal taxa to biostimulant use were Arachnomyces in soybean and

cotton; and Rhizophlyctis in corn. The proposed integrated indicators yielded

highly favorable positive impact indices (averaging at 0.80), indicating that

biostimulant-treated fields correlate with better plant development and crop

performance. Prominent indices were observed for indicators in four themes:

soil biology (average index 0.84), crop production (0.81), soil physics

(compaction reduction 0.81), and chemical fertility (0.75). The multi-attribute

approach employed in this study offers an effective strategy for assessing the

efficacy of biostimulant products across a wide range of crops and

production systems.

KEYWORDS

impact assessment, multi-attribute indicators, rhizosphere microbiome, soil
microbiome, sustainable agriculture
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Introduction

As defined by Yakhin et al. (2017) a biostimulant is “a

formulated product of biological origin that improves plant

productivity as a consequence of the novel or emergent properties

of the complex of constituents, and not as a sole consequence of the

presence of known essential plant nutrients, plant growth

regulators, or plant protective compounds.” Considering the

complexity to determine the underlying mechanisms of action of

commercial products, which normally are constituted of diverse

biological sources and obtained thru varied industrial processes, one

important focus of the research in this field should be directed to

proof the biostimulant efficacy (Yakhin et al., 2017). However, to

determine the biostimulants technology efficacy more quantitative

assessments on field trials are needed (Li et al., 2022).

The soil application of biostimulants is expected to impact not

only plant performance, but also the soil/rhizosphere microbiomes

associated with plants (Backer et al., 2018; Nuzzo et al., 2020). Soil

and rhizosphere microbiomes function as extensions of the plant

genome, playing a critical role on plant development and protection

(Berendsen et al., 2012; Mendes et al., 2013). Microbial inoculants

can modify the native soil community composition and structure,

potentially altering soil functioning through changes in the soil

microbiome (Mawarda et al., 2020). Microbiome modulation

through microbial inoculants represents a sound strategy to

promote plant development (Berg et al., 2021). Therefore,

understanding the impact of biostimulants on microbial

communities associated to crop field conditions is essential to

assess their efficacy.

Biostimulants have been used in a wide variety of crops, in a

whole range of cropping intensification levels, as well as in diverse

agricultural production environments. Many studies have brought

significant advances in the knowledge of soil biological functioning

and the specific roles of different soil fertility attributes,

characteristic to the varied types of soils, forms of management,

and environmental contexts (Hungria et al., 2009; Lopes et al., 2013;

Chamizo et al., 2018). Sets of biological indicators have also been

devised to adequately focus on the role of biostimulants as a special

kind of soil quality amendment (Mendes et al., 2015). However, in

most instances these soil biology indicator sets apply to a partial

assortment of variables, generally restricted to microbial activity,

enzymatic functions, and soil organic matter composition (de Faria

et al., 2021), lacking consideration on crucial aspects related to

environmental, economic, and agronomic endpoints, essential for

crop management decision-making.

More recent approaches address comprehensive soil health

measures, relying on cutting-edge data analyses that include the

use of microbiome machine learning for assessing soil health

(Chang et al., 2017; Wilhelm et al., 2022). Nonetheless, such

approaches may not suffice when a whole crop performance

scenario is sought out, as to provide agricultural management

recommendations in real farm settings (van Es and Karlen, 2019;

Williams et al., 2020). In this sense, comprehensive indicator sets

which aggregate crop performance (i.e., above and below-ground

plant vigor, stand status, produce quality, productivity, and
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revenue), soil physicochemical and biological properties, and

plant health markers are needed to properly assess the impacts of

biostimulant technology and its role toward the sustainability of

cropping systems (Doran, 2002). Given the diversity of formats,

measurement units, and expression scales involved in such soil-

biostimulant-crop performance impact assessment studies, in

relation to the diversity of parameters analyzed, there is relative

difficulty in aggregating, interpreting, and expressing the varied set

of indicators in integrated indices, which would improve the

understanding and communication of performance gains, thus

favoring decision-making for adoption and expansion of

the technology.

In this study, we first verified the impact of the use of a

biostimulant on the microbiome associated to several crop

systems, which served as a proxy for biostimulant’s effectiveness.

Then, to address the issue of variability and the absence of

standardized indicators for biostimulants impact assessment

studies, we proposed a multi-attribute system for integrating soil

physicochemical, biological, crop performance and health

indicators associated with biostimulant technology use. The

proposed indicator system aims to favor the registration,

interpretation, and communication of integrated impact and

technical performance indices, resulting from analyses obtained

on-farm. Field assessments were carried out on reference case

studies, in cropping systems with a well-documented history of

biostimulant application in different crops, distributed throughout a

range of productive regions, encompassing an ample variety of soils

and climatic conditions.
Materials and methods

Selection of commercial biostimulant,
reference farms and experimental design

As biostimulant, we selected a well-established commercial

product with usage history of over 20 years in South America.

The product Microgeo® is a biostimulant applied in a wide variety

of crops (Gama et al., 2014; Cardoso et al., 2017; de Almeida et al.,

2018; da Silva et al., 2020; Suarez et al., 2020; Filho et al., 2021). This

technology is based on a continuous liquid compost and consists of

locally adapted microorganisms brewed in situ in a field-

implemented biofactory , under the influence of the

organomineral matrix Microgeo® (patent number PI 0207342-0).

The product presents 107 to 109 cells ml-1, diversified among fungi,

yeasts, and up to 89% bacteria, the main phyla being

Actinomycetota, Bacteroidota, Cyanobacteriota, Bacillota, and

Proteobacteriota. We selected eight farms producing corn (3

farms), soybean (2), cotton (2) and sugarcane (1), located in

different biomes and production contexts in Brazil and Paraguay,

with history of the biostimulant use. Detailed information on

location, climate and biome, size of experimental area, history of

biostimulant use, planting and sampling dates are described in

Table 1. In each evaluated production system, the biostimulant was

tested against the control, i.e., two treatments – biostimulant vs
frontiersin.org
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control, in neighboring commercial fields selected as to display as

sole contrasting feature the application of the biostimulant. The

authorization for soil sampling is registered with the National

System for the Management of Genetic Heritage and Associated

Traditional Knowledge (SISGen) under number A11C02F.
Soil and rhizosphere
microbiome assessment

Soil from crop inter-rows (bulk soil) and rhizosphere were

collected from 5 to 20 cm depth. Rhizosphere samples were

collected by removing the whole plant root system from soil and

gently shaking to remove excess soil from the root system. Then, the

root system was placed in plastic bags and vigorously shaken to

obtain the soil adhered to the root system, which was used for

downstream analyses. Each rhizosphere sampling replicate

consisted of a single plant, and the bulk soil sample was collected

in the inter-row next to the plant used for rhizosphere sampling.

Therefore, two sample types (bulk soil and rhizosphere) and two

treatments (biostimulant and control), considering three replicates,

were collected across eight production systems (Table 1), resulting

in 96 independent samples for microbiome assessment.
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Soil and rhizosphere DNA isolation was performed using 0.250 g

of soil, which were transferred to 2 mL cell lysis tubes containing glass

microbeads (provided by the manufacturer). DNA extraction was

performed using the DNeasy Powersoil Pro kit (Qiagen, Hilden,

Germany), following the manufacturer’s recommendations. The

isolated DNA was subjected to electrophoresis on a 0.8% agarose gel

for integrity analysis. Purity was evaluated on a NanoDrop1000

spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA),

using the absorbance ratios of 260/280 and 260/230.

For bacterial community analysis, the hypervariable region

V4 of the 16S rRNA gene was amplified using the primers

515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al., 2010). For

fungal community analysis, the ITS1-5F (Internal Transcribed

Spacer) region of the rRNA gene was amplified using the primers

ITS5‐1737F (5’-GGAAGTAAAAGTCGTAACAAGG-3’) and

ITS2‐2043R (5’-GCTGCGTTCTTCATCGATGC-3’). After

purification of the PCR product with the AMPure XP Beads kit

(Beckman Coulter, Life Sciences), Illumina adapters were ligated in

a PCR reaction using Nextera XT Index Primer 1 (N7xx) and

Nextera XT Index Primer 2 (S5xx). Subsequently, the product of

this reaction was purified and quantified using a NanoDrop

spectrophotometer for equimolar normalization of the
TABLE 1 Reference farms selected as case studies with a well-documented history of biostimulant adoption, with respective crops, general aspects,
biostimulant usage, and sampling information.

Farm Crop
(Cultivar) Location Coordinates

Climate
zone* and
Biome

Area**
Years with
Biostimulant
Application

Sampling
Plant Growth
Stage

Planting/
Sampling
Dates

Corn_MG
Corn
(P3707VYH)

Pirajuba, Minas
Gerais, Brazil

19°50’57.1”S
48°43’00.5”W

Cwa, Tropical
savannas and
shrublands

10,000
ha

3 Stage R3 Apr 21/Jul 21

Corn_GO
Corn (AG
8480)

Inhumas, Goiás,
Brazil

17°19’10.4”S
50°53’06.2”W

Aw, Tropical
savannas and
shrublands

1,608 ha 8 Stage R2 Feb 21/Jul 21

Corn_MS
Corn (AG
8480 PRO3)

Itaporã, Mato
Grosso do Sul,
Brazil

22°00’30.4”S
54°46’47.3”W

Cfa, Tropical
broadleaf forest

1,145 ha 15 Stage R1 Mar 21/Jul 21

Soy_SC Soybean (NI)
Modelo, Santa
Catarina, Brazil

26°45’12.4”S
53°05’51.7”W

Cfa, Tropical
broadleaf forest

400 ha 7 Stage R2
Feb 21/May
21

Soy_PY
Soybean
(Monsoy
6211 IPRO)

Santa Fé del
Paraná, Alto
Paraná, Paraguay

25°10’46.9”S
54°37’50.0”W

Cfa, Tropical
broadleaf forest

450 ha 15 Stage R2
Mar 21/Apr-
Jun 21

Cotton_MT
Cotton
(TMG 44
B2RF)

Campo Novo do
Parecis, Mato
Grosso, Brazil

13°43’32.5”S
57°55’48.2”W

Aw, Tropical
broadleaf forest

3,000 ha 5 Flowering NI/Aug 21

Cotton_BA Cotton (NI)
Luiz Eduardo
Magalhães, Bahia,
Brazil

11°30’19.8”S
45°44’08.2”W

Aw, Tropical dry
broadleaf forest

13,500
ha

5 Reproductive
Jan 21/May
21

Cane_SP
Sugar cane
(RB92 8064)

Ribeirão Preto, São
Paulo, Brazil

20°49’34.3”S
47°26’55.3”W

Cwb, Tropical
broadleaf forest

1,050 ha 2 Pre-maturation Apr 18/Jul 21
* Köppen-Geiger classification.
** Total area treated with the biostimulant.
NI, not informed.
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concentration. A pool was assembled and quantified by qPCR for

validation and determination of the final concentration using the

KAPA Library Quantification kit for Illumina (Roche). High-

throughput sequencing of the amplicons was performed on the

Illumina MiSeq platform (2 x 250 bp), in 2x250 bp runs.
Bioinformatics analyses and statistics

The quality of the raw sequences was checked using the

program FASTQC v0.11.5 (Andrews, 2010). Sequences

originating from the primers were removed using the Cutadapt

v4.2 tool (Martin, 2011). Microbiome analysis was performed using

the DADA2 v1.24.0 tool (Callahan et al., 2016), including: removal

of low-quality reads (phread <20) and noise (denoising), joining of

R1 (forward) and R2 (reverse) sequences, removal of chimeras

(using the consensus method), and clustering of representative

sequences based on amplicon sequence variants (ASVs).

Taxonomic classification was then assigned using the SILVA

ribosomal RNA gene database version 138.1 (Quast et al., 2013).

Analyses were performed in the R statistical environment (v. 4.2.1)

(R Development Core Team, 2014). The taxonomic table

containing the count was imported along with the metadata file

for analysis in the Phyloseq package (McMurdie and Holmes, 2013)

of R. Principal coordinates analyses (PCoA) based on the Bray-

Curtis (Bray and Curtis, 1957) distance matrices were performed to

evaluate divergence between replicates and samples. Sequencing

coverage was evaluated by rarefaction analysis. Alpha diversity

indices based on the Chao1 richness estimator (Chao, 1984),

observed species, and Shannon-Wiener H’ index were calculated

by the Phyloseq package of R. Microbial composition was expressed

in relative abundance for all taxonomic levels.
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The statistical package DESeq2 v1.36.0 (Love et al., 2014) was

used to identify differentially abundant microbial groups. DESeq2

applies negative binomial distribution analyses to evaluate

differences by comparing two samples in triplicate. A p-value of

<0.05 was used, and heatmaps were generated for visualization of

the bacterial and fungal genera that were statistically different

between treated and untreated (control) samples.
Crop development, chemical, physical, and
biological analyses

Sampling procedures for crop development and plant biometry

were standardized according to the variables appropriate for the

different cropping systems (Figure 1) and are presented here only as

related to the four crop species studied. Sampling was conducted at

the specific plant developmental stage as indicated in Table 1. For

annuals (corn, soybean, cotton) stand quality was assessed by

counting plants in five meter transects with three repetitions per

treatment, 30-60 days after emergence (DAE). Perennial sugar-cane

stand was assessed by counting tillers in 10 m transects with five

repetitions per treatment, 120 DAE. Plant vigor indicators (1-4)

were estimated by measuring/counting leaves/stems/internodes/

fruits/pods in ten randomly selected plants per treatment.

Rooting was checked in 10 plants per treatment for annuals, 30-

60 DAE; and for sugar-cane through 50x50 cm trenches (deeper

when equipment available) in three repetitions per treatment.

Product quality (according to appropriate crop variables,

Figure 1), production and revenue data were obtained from farm

managers’ administrative records. Soil samples for chemical

determinations were obtained just postharvest, from five 0-20 cm

depth subsamples taken from the cropping lines, combined into one
FIGURE 1

Structure of analytical themes and indicators of crop development, production, and soil quality associated with the adoption of biostimulant technology.
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sample per treatment. Soil samples obtained from 0-10 cm depth

were used for microbiome analysis and for enzymatic activity

determinations, always observing medium soil humidity.

Nutrients, organic matter, and enzymatic activity determinations

were carried out in the same certified commercial laboratory

(Laborsolo – Londrina, PR), conforming one single purchasing

order (simultaneous). Soil compaction was determined with a

penetrometer up to 40 cm depth, in five repetitions per

treatment, postharvest. Bulk soil and rhizosphere samples used

for microbiome analyses were taken adjacent to the sampling spots

used for chemical and biological analyses.

For a better understanding of the correlations between the

different indicators and how they are related to both impact

values and technical performance of biostimulant technology, we

conducted principal component analyses for all variables

(indicators) and observations (case studies). The Kaiser criterion

was used to select the principal components to retain (Kaiser, 1958).
Crop system parameters and
indicator system

The system of indicators for crop development, soil

physicochemical and biological quality, and plant health

associated with the adoption of biostimulant technology was

structured according to the multi-attribute conception of the

APOIA-NovoRural method (Rodrigues and Campanhola, 2003;

Rodrigues et al., 2010), according to which the analytical variables

obtained in the field are expressed in a utility scale (i.e., indices 0-1,

baseline modeled at 0.7). The indicators are integrated into five

analytical themes, namely: i. crop production (i.e., vegetative

development and productive performance, nine indicators), ii. soil

chemistry (nine indicators), iii. soil physics (five indicators), iv. Soil

biology (six indicators) and v. plant health (10 indicators, not

assessed in the present study, Figure 1). The selection of

analytical themes and associated indicators to specifically address

biostimulant impacts and effects on crop performance departed
Frontiers in Plant Science 05
from a literature review of research previously carried out on the

studied biostimulant (Gama et al., 2014; Cardoso et al., 2017; de

Almeida et al., 2018; da Silva et al., 2020; Suarez et al., 2020; Filho

et al., 2021), and complemented by Embrapa’s team institutional

experience on the subject (Hungria et al., 2009; Lopes et al., 2013;

Mendes et al., 2013; Mendes et al., 2015; Mendes et al., 2018; de

Faria et al., 2021).

Information to resolve the indicators is obtained in field

assessments, plant biometry estimations, physicochemical and

biological analyses of soil samples. Analytical results are entered

directly into scaling checklists designed to automatically weight the

data and express the impact and technical performance indices for

the indicators (Figure 2). The integrated indices are then graphically

expressed for the considered analytical themes, respective to the

local management conditions and productive contexts observed in

the studied farms.

The scaling checklists present variable construction for each

indicator, always including reference data from the control plots

compared to those observed where biostimulant technology is

adopted. Calculated impact values (i.e., control vs treatment

variation) and technical performance (i.e., observed condition vs

targeted technical standards) are associated with correspondence

tables for the utility scale (0 to 1), so that different indicators have

their implications properly evaluated, according to specific

quantitative variables presented graphically. These matching

values are then performed by best fit equations and respective

coefficients, for automatic expression of impact and technical

performance indices (Figure 2).

The composition of the correspondence curves between

indicators and utility values is based on probability and sensitivity

tests, case by case for each indicator (Girardin et al., 1999). In the

probability test, the thresholds of the indicator’s explanatory

variable (in Figure 2, 0 to 200 mg p-nitrophenol.kg soil-1.h-1) and

its direction (whether positive or negative) are defined in relation to

its technical agronomic significance. In the sensitivity test, the value

relationship between the indicator’s observed amplitude and the

impact/technical performance is defined, according to the
FIGURE 2

Example of a scaling checklist showing the indicator related to the b-Glycosidase enzyme, from the APOIA-Biostimulant system. The scaling
checklists bring (i) the statement of the analytical variable and corresponding indicator (i.e., b-Glycosidase); (ii) cells for data entry of control and
treatment samples (biostimulant); (iii) calculated values of the indicators, i.e., Glycosidase 1 index (percentage change in enzyme activity, control x
biostimulant) and Glycosidase 2 index (IGlycosi2, enzymatic activity level in the treatment); (iv) correspondence table between the calculated indices
(i.e., % change and enzymatic activity) and utility values (scale 0 to 1); (v) graphic expression of these correspondences, with calculated indices
markers illustrated on the abscissa; (vi) best fit equations and coefficients for converting calculated indices into (vii) utility values (in this case, U-
IGlycosi1 = 0.98; U-IGlycosi2 = 0.65). For additional details on the indicator system construction see Rodrigues et al., 2010.
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correspondence between the occurrence and a standard of technical

adequacy (baseline) established in the literature or experimentally.

The compliance value for the indicators’ baseline is always

modeled at 0.7, which corresponds to the situation of stability (zero

change, i.e., no impact) or technical suitability for the indicator,

according to agronomic standards or benchmarks of productive

performance. The evaluation results obtained in the scaling

checklists are aggregated by the average value of the utility indices

for the set of indicators in each analytical theme and expressed in a

summary chart of impact and technical performances. Figure 3

shows the baseline, the impact indices, and the technical

performance indices for each component theme. Additionally, the

average indices of impact and technical performance, for the whole

set of indicators, are shown in the bars below. From the graph, one

can verify the analytical themes that deserve attention for

management improvements and those that best represent the

impacts and the technical performance achieved, in the specific

conditions observed in the studied farms. Specific graphs for each

theme present each of the analyzed indicators, allowing the

proposition of management recommendations and adoption of

practices to promote soil quality and crop development.

The data set for reporting on crop development, soil

physicochemical and biological quality, and plant health

associated with biostimulant use, as carried out in reference

farms, is presented in an Excel® file (Supplementary Material)

consisting of eight worksheets: Worksheet 1, Reference: presents
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an explanatory summary of the methodological basis, general

aspects and the main bibliographical references, with examples of

the applicability of the indicator checklists, in addition to references

for institutional contacts. Worksheet 2, Identification: data for the

identification of the studied farm, the scale and organization of

productive activities, and the space-time context defined for the

field observations, selection of samples, and considerations on the

objectives of the producer interested in the analyses. The following

six worksheets refer to the 39 indicators’ scaling checklists for the

five analytical themes (Figure 1) and a results worksheet with

respective graphic representations (Figure 3).
Results

Impact of biostimulant use on soil and
rhizosphere microbiomes

In general, all locations and crops evaluated revealed a strong

rhizosphere effect (Figures 4, 5), i.e., rhizosphere samples cluster

apart from soil samples, as the plant exudate is an important driver

in the microbiome assembly in the rhizosphere. The alpha diversity

observed in all crop systems evaluated did not show significant

variation (Supplementary Figures 1, 2 for bacterial and fungal

communities, respectively). A general composition for bacterial

and fungal communities associated with all treatments are shown
FIGURE 3

Example of expression of the APOIA-Biostimulant indicator system, showing the baseline (0.7 in red), the impact indices (in blue), and the technical
performance indices (in magenta) for each component analytical theme associated with the adoption of biostimulant technology.
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for each crop system, i.e., corn (Supplementary Figure 3), soybean

(Supplementary Figure 4), cotton (Supplementary Figure 5), and

sugarcane (Supplementary Figure 6). With few exceptions, the beta

diversity showed correlation between the structure of microbial

communities and the use of the biostimulant, indicating that the use

of the technology resulted in change of the microbiome structure in

the plant rhizosphere and in the inter-row soil. Bacterial and fungal

communities associated with corn showed a different clustering
Frontiers in Plant Science 07
pattern with the biostimulant treatment in comparison with the

control treatment for all three fields evaluated (Figures 4A–C, 5A–

C). The same pattern was observed for bacterial and fungal

communities in soybean, where the biostimulant-treated samples

were grouped separated from control samples (Figures 4D, E, 5D,

E), except in Soy_SC where one control sample from bacterial

community grouped with samples from the biostimulants

treatment (Figure 4D) and in the fungal community two samples
B

C D

E F

G H

A

FIGURE 4

Principal Coordinates Analysis (PCoA) of amplicon 16S rRNA sequencing data based on Bray-Curtis distance matrix. Each data point represents a
sample, and the sample source with different colors and shapes are indicated in the figure. Each graph shows four treatments (with 3 replicates),
control rhizosphere (CR), control soil (CS), treatment rhizosphere (TR) and treatment soil (TS) for all crop systems evaluated, including corn in MG
(A), GO (B), MS (C), soy in SC (D) and PY (E), cotton in MT (F) and BA (G), and sugar cane in SP (H). PCoA was performed using PhyloSeq package on
R software.
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did not cluster as expected (Figure 5D). The same general pattern

discriminating biostimulant-treated samples was observed for

Cotton (Figures 4F, G, 5F, G), except for bacterial communities in

soil samples. For sugarcane all treatments were discriminated

considering bacterial or fungal communities (Figures 4H, 5H),

except bacterial communities in inter-row soil samples, that

clustered biostimulant and control samples together (Figure 4G).

Further analysis was performed to identify microbial taxa

significantly enriched in soil and in the rhizosphere of plants
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treated with the biostimulant (Supplementary Figures 7–10).

Significant enrichment or depletion of bulk soil bacteria

was found in all fields cultivated with corn and cotton

(Supplementary Figure 7). Nine bacterial genera were enriched in

corn fields where biostimulant was used, including Longispora and

Prauserella (Supplementary Figure 7). Methylovirgula and

Novosphingobium bacterial genera were enriched in cotton

biostimulant treated fields (Supplementary Figure 7). Specific

fungal genera significantly changed in abundance in all crop
B
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G H

A

FIGURE 5

Principal Coordinates Analysis (PCoA) of amplicon ITS sequencing data based on Bray-Curtis distance matrix. Each data point represents a sample,
and the sample source with different colors and shapes are indicated in the figure. Each graph shows four treatments (with 3 replicates), control
rhizosphere (CR), control soil (CS), treatment rhizosphere (TR) and treatment soil (TS) for all crop systems evaluated, including corn in MG (A), GO (B),
MS (C), soy in SC (D) and PY (E), cotton in MT (F) and BA (G), and sugar cane in SP (H). PCoA was performed using PhyloSeq package on R software.
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systems evaluated, in total, 37 fungal genera were significantly

enriched across different crop systems (Supplementary Figure 8).

The most biostimulant responsive fungal genera was Lindtneria in

corn (MS), Leucocoprinus in sugar cane (SP) and cotton (BA) and

Clathrus in soybean (PY) (Supplementary Figure 8).

Considering rhizosphere samples, the microbiome analysis

showed that the use of the biostimulant enriched or depleted

specific bacterial genera in all crop systems, except in Corn_GO

(Supplementary Figure 9). The most responsive bacterial taxon to

biostimulant application was Prevotella in cotton (MT), Prauserella

(MS) and Methylovirgula (MG) in corn, and Methylocapsa in sugar

cane (SP) (Supplementary Figure 9). Thirty-one fungal genera were

significantly enriched in the rhizosphere across all crop systems

(Supplementary Figure 10), with the use of the biostimulant.

Arachnomyces genus was the most responsive genus in soybean

(PY and SC) and cotton (MT). The fungal genus Rhizophlyctis

significantly increased in abundance in corn rhizosphere (MS) in

fields treated with biostimulant.
Impact of biostimulant on crop
development, production, and soil quality

All indicators were positively impacted with the biostimulant

use (Supplementary Table 1). Two sets of interactions among the

indicator indices were checked through Principal Component

Analysis, one related to the impacts (i.e., relative change from

control to biostimulant treatment) and the other relative to the

performances (i.e., biostimulant index levels relative to defined

technical standards), both relative to soil physicochemical and

biological indicators, and to crop development and production.

For the biplots of the correlation circle and the observations cloud

of the Principal Component Analyses for both impact values and

technical performance, refer to the Supplementary Figure 11.

Among the impact indicators of soil quality, almost all associated

to one PC, with significant Pearson’s correlations (a=0.05) for

exchangeable cations (K, Ca+Mg, CEC) and, expectedly, the

associated variables Total bases and Bases saturation. The enzyme

Arylsulfatase related negatively with P in a PC2 and b-Glycosidase
stood in a PC3 without being strongly related to any other variable.

Regarding the soil performance indices, only CEC, Total bases, and

Bases saturation correlated significantly. B-Glycosidase associated

positively to pH in PC1 and both correlated negatively with organic

matter and Ca+Mg. Arylsulfatase associated negatively with

Potential acidity (H+Al).

Interesting significant correlations were observed for the crop

development and production indicators. The PC1 for the impact

indices, which accounts for 40% of the variability (eigenvalue=5.26),

strongly associated organic matter, soil compaction (negatively),

plant vigor 2 and 3 (related to plant production and biometry),

product quality and, expectedly, crop productivity and net revenue

(Figure 6). Hence, organic matter showed to be relevant in

preventing soil compaction and promoting crops development

and production. The soil enzymes did not show significant

correlation with other variables, with b-Glycosidase associated

with plant vigor 4 (average plant height-cm) in a PC3 which
Frontiers in Plant Science 09
accounts for 19.7% of the variability. Interesting negative

correlations were observed between the indicator product quality

(weight of 1,000 seeds for annuals; TRS for sugarcane) and soil

compaction; and rooting with revenue. Regarding the crop

development and production performance indices, a PC1

accounting for 38% of the variability (eigenvalue=4.96) equally

associated organic matter, plant vigor 1, 2, and 3 (including pods

per plant, leaves per plant, average plant height), product quality

(weight of 1,000 seeds, TRS), crop productivity and net revenue. The

soil enzymes did not show significant correlations, being associated

with each other in a PC3, which accounted for 15% of the variability.
Discussion

Great interest has been directed toward monitoring soil-

biostimulant-crop interactions, in order to improve technical and

usage recommendations. Most indicator sets assembled, however,

lack in scope to properly assess the impacts of the technology on the

diversity of cropping systems and farming contexts, as to integrate

soil physicochemical and biological properties, plant health, crop

performance, and farm results. Using a multi-attribute approach,

we demonstrate the positive impact of biostimulant on the

microbiome associated to different crop systems and then

developed integrated indicators to express these impacts of

biostimulants on crop performance and soil quality.

Considering that microbial inoculants and biostimulants are

screened and tested in controlled laboratory conditions, it is

common to observe lack of consistency when commercial

products are tested in field conditions (Kaminsky et al., 2019).

After four commercially available microbial amendments failed to

promote tomato growth in greenhouse experiments, Nuzzo et al.

(2020) suggested that additional confounding variables can interfere

in the efficacy of biostimulants evaluated under commercial fields.

This fact reinforces the importance of having a reliable strategy to

measure biostimulants impact in commercial validation settings,

which normally consist in side-by-side comparisons instead of

replicated comparisons with proper experimental design. In this

sense, the innumerable local variabilities and particularities that

influence crop performance, aside of biostimulant usage, are

circumvented in the proposed application of the indicator system,

by reducing all production environmental complexity to the

immediate contrast control vs biostimulant treatment, in the

several reference farms and crops studied.

A number of studies has demonstrated that inoculants can

modify the native soil microbiome directly or indirectly through

changes in plant exudates (Trabelsi and Mhamdi, 2013; Mawarda

et al., 2020; Cornell et al., 2021). If these changes result in increase of

microbial diversity, this could improve ecosystem functioning and

consequently plant performance (Bardgett and van der Putten,

2014). In our results, no clear pattern was observed for increased

alpha diversity when biostimulant was used. However, all fields

treated with biostimulant showed improved plant performance.

This suggests that not only increase or decrease of alpha diversity,

but also microbial community structure can be correlated with

changes in soil microbiome functioning, resulting in better plant
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development. Therefore, considering the pivotal role of the soil and

rhizosphere microbiome for plant development (Mendes et al.,

2013) and that the use of inoculants and biostimulants can

modify native soil microbiome and consequently alter soil

functioning (Mawarda et al., 2020), the assessment of the

microbiome as affected by biostimulant use is an important

indicator of the biostimulant effectiveness. Despite of diverse soil

conditions, in farms located in different biomes and diverse crops,
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areas treated with biostimulants were discriminated from control

areas based on the structure of the microbiome. Although a better

mechanistic understanding of the mode of action of complex

biostimulants is needed to finely tune their management and

measure their effectiveness in field conditions, having a

comprehensive set of indicators helps to tackle these challenges.

The integrated analysis of crop development, production, and

soil quality associated with the biostimulant use documents the
B
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A

FIGURE 6

Most meaningful significant Pearson’s matrix correlations (a=0.05) relating multi-attribute impact indices for crop development, production, and soil
quality indicators, applied to six reference farms and four different crops (corn, soybean, cotton, sugarcane), comparing control plots against those
subjected to biostimulant technology application (varied environmental and temporal contexts). (A) Soil compaction vs Product quality, (B) Plant
vigor 4 vs Plant vigor 2, (C) Plant rooting vs Net revenue, (D) Soil organic matter vs Crop production, (E) Soil organic matter vs Net revenue, and (F)
Crop production vs Net revenue.
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positive impacts and the improvement in technical performance

observed in the field trials. Among the main results, it was observed

that the impact indices, that is the relative comparison between the

controls and the areas with biostimulant, were the most expressive;

mainly in the soil biology theme (index 0.84 for arylsulfatase and b-
glucosidase enzymes), followed by soil physics (index 0.81 for

compaction), and chemistry (index 0.75) and, in response to

these positive impacts, the crop production theme (index 0.81).

This preponderance of soil biology as the analytical theme of better

performance confirms the important effect of those enzymes, as

advocated by Mendes et al. (2015; 2018).

The improvements observed in all these analytical themes, in

particular the crop production indicators, brought a series of responses

of great interest to farmers, including root development (average index

0.89), plant vigor (index 0.83 in length of branches and leaves),

vegetative development (index 0.82 in number of internodes, length

of stems, pods or grains per plant) and product quality (index 0.77 for

protein content in the grains, weight of 1,000 seeds, or TRS–kg of sugar

per ton of cane). Most importantly, as an integrated result of these

indicators, in areas treated with biostimulant the average productivity

was greatly favored in all crops (index 0.84 for bags.ha-1 or ton.ha-1),

resulting in expressive gains in net revenue (index 0.81 for $.ha-1 see

Supplementary Table 1). A close correlation between the productivity

and net income indicators (r2 = 0.92), although naturally expected,

attests that these gainswere achieved without significant cost increases,

pointing to the viability of the biostimulant program relative to the

rising prices of other inputs, such as conventional chemical fertilizers.

These results of the impact indices (average of cases 0.80 on a

scale between 0 and 1), which represent relative gains between

treated and control areas, are of great significance, since the

performance indices were more modest (cases average 0.69). As

these performance indices represent the observed local condition, in

relation to appropriate or desired technical benchmarks, it is

indicated that there is still room for further gains, as the

applications of biostimulant are repeated throughout the harvests,

enhancing the expression of the observed impacts. Noteworthy is

the fact that even under very contrasting situations, including four

different crops in seven distinct ecoregions, soil quality and crop

performances were always superior in the areas treated with the

biostimulant technology. Also, significant correlations were

observed between the averages of the integrated indices of soil

quality and the indicators of soil biology performance (r2 = 0.82);

followed by the themes soil chemistry and crop production – the

latter possibly a consequence of all others.

In conclusion, the microbiome analysis revealed that the

biostimulant use consistently impacted the soil and rhizosphere

microbiome assembly. The changes in community structure

observed in biostimulant-treated fields correlate with better plant

development and crop performance. This observation served as a

proxy to assess the effectiveness of biostimulants, which was

subsequently confirmed through the utilization of the integrated

indicators approach. The expression of the results obtained by the

use of integrated indicators suggests i) coherence between the

system’s analytical themes and indicators with better responses,

ii) proper amplitudes of the obtained indices (expressive, but not

extreme), and iii) conformity of the thresholds, weighting factors,
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and graphic scales. These results point to adequate calibration and

sensitivity of the set of indicators, for adequately evaluating the

impacts of biostimulants on crop performance.
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