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A B S T R A C T   

Multivariate Curve Resolution (MCR) is a multivariate analysis procedure commonly used to analyze spectro-
scopic data providing the number of components coexisting in a chemical system, the pure spectra of the 
components as well as their concentration profiles. Usually, this procedure relies on the existence of distinct 
systematic variability among spectra of the different samples, which is provided by different sources of variation 
associated to differences in samples origin, composition, physical chemical treatment, etc. In solid-state NMR, 
MCR has been also used as a post-processing method for spectral denoising or editing based on a given NMR 
property. In this type of use, the variability is induced by the incrementation of a given parameter in the pulse- 
sequence, which encodes the separation property in the acquired spectra. In this article we further explore the 
idea of using a specific pulse sequence to induce a controlled variability in the 13C solid-state NMR spectra and 
then apply MCR to separate the pure spectra of the components according to the properties associated to the 
induced variability. We build upon a previous study of sugarcane bagasse where a series of 13C solid-state NMR 
spectra acquired with the Torchia-T1 CPMAS pulse sequence, with varying relaxation periods, was combined 
with different sample treatments, to estimate individual 13C solid-state NMR spectra of different molecular 
components (cellulose, xylan and lignin). Using the same pulse sequence, we show other application examples to 
demonstrate the potentiality, parameter optimization and/or establish the limitations of the procedure. As a first 
proof of principle, we apply the approach to commercial semicrystalline medium density polyethylene (MDPE) 
and polyether ether ketone (PEEK) providing the estimation of the individual 13C ssNMR spectra of the polymer 
chains in the amorphous (short T1) and crystalline (long T1) domains. The analysis also provided the relative 
intensities of each estimated pure spectra, which are related to the characteristic T1 decays of the amorphous and 
crystalline domain fractions. We also apply the analysis to isotactic poly (1-butene) (iPB-I) as an example in 
which the induced T1 variability occurs due to the mobility difference between the polymer backbone and side- 
chains. A jack-knifing procedure and a student t text allow us to stablish the minimum number of spectra and the 
range of relaxation periods that need to be used to achieve a precise estimation of the individual pure spectra and 
their relative intensities. A detail discussion about possible drawbacks, applications to more complex systems, 
and potential extensions to other type of induced variability are also presented.   

Introduction 

The use of multivariate methods to help in the processing and 
interpretation of 13C solid state NMR (13C ssNMR) data is a relatively 
usual procedure [1–11]. In general, 13C ssNMR spectra of a set of 
different samples with variability associated to different samples origin, 
chemical synthesis, cultivars from breading programs, specific physical 

or chemical treatment, etc., are used to create a data matrix where one of 
the dimensions are the NMR spectra and the other are the different 
samples. Using multivariate analysis such as Principal Component 
Analysis (PCA) it is possible to unveil orthogonal information in a 
dataset by assessing its main variability and detecting the data structure 
according to the way they are related [12,13]. Besides, PCA enables 
pattern recognition in the distribution of samples given their similarity 
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(grouping) and particularities, as well as to detect trends (continuous 
variability across the samples instead of groups). The spectral differ-
ences that lead the distribution of the samples in the new orthogonal axis 
can be identified in the loading of the PĆs, and then be associated to 
specific differences in the composition and structure among the samples. 
Other approaches, such as Multivariate Curve Resolution (MCR), are 
also used to determine the number of components coexisting in a 
chemical system allowing the extraction of the pure spectra of the 
components (qualitative analysis) as well as the concentration profiles of 
each component (quantitative analysis). An obvious prerequisite for 
these methods is the existence of systematic variability (subjacent data 
structure) among the samples, which is provided by different sources of 
variation present in the data matrix. 

In the multivariate approach, the full variability and covariance in 
the entire NMR spectra are considered and the distribution of the sam-
ples is based on systematic variability found in the signal of the full set of 
samples. Because the goal is usually to distribute the samples according 
to their physical chemical characteristics reported by the 13C ssNMR 
spectra, in most of the reported works, the variability captured by the 
multivariate analysis results from differences in the sample preparation, 
geographic location, contamination, and physical-chemical treatments, 
among others [5–7]. Thus, MCR is used to estimate the pure spectra of 
the components responsible for the observed variability [14–17]. For 
instance, after showing that the degree of acetylation has a direct cor-
relation with the local conformation disorder, Fachinatto et al., used 
MCR to identify the 13C ssNMR spectral lines associated to conforma-
tionally disordered chains in chitosan [7]. This was achieved by per-
forming MCR in the data constituted by a set of 13C ssNMR spectra 
obtained for samples with different degree of acetylation, the controlled 
source of variation. 

Alternative uses of MCR in the context of ssNMR have also been 
proposed [18,19]. In those cases, MCR is used as a method of signal 
processing for denoising of 1D and 2D spectra, separating T2 decays in 
spin echo experiments [20] or even analyzing 13P ssNMR spectra [14]. 
More recently, MCR was also employed to separate the spectra of the 
components using 13C ssNMR spectra of natural biomass based on their 
T1 relaxation times [21]. The common feature among these applications 
is that the variability required by the MCR analysis was induced in each 
single sample, in a controlled way, using NMR pulse sequences. More 
specifically in reference [21], the Torchia CP-T1 pulse sequence was 
used to modulate the spectral intensities (the induced variability) of the 
resulting 13C-CPMAS spectra by a factor that depends on the 13C T1 
relaxation time of the corresponding chemical group. Thus, by varying 
the relaxation delay, z-filter duration, in the Torchia-T1 pulse sequence, 
it was possible to acquire a set of 13C-CPMAS spectra with the spectral 
intensities modulated by the corresponding 13C T1. Then, the MCR 
procedure was performed to this set of spectra to separate the different 
components of the spectrum according to their 13C T1 relaxation times, 
which could be directly associated with differences in the molecular 
mobility and packing of cellulose, xylan and lignin. This procedure was 
applied to a series of samples submitted to different treatments in order 
to produce a expanded dataset with variability associated to the sample 
treatments and the 13C T1 relaxation times. The use of the procedure 
allowed to decompose the 13C-CPMAS spectra in three estimated sub 
spectra corresponding to cellulose, xylan and lignin in the chemically 
pretreated sugarcane bagasse samples, as well as the relative amount of 
each component. 

In this article we further explore the idea of reference [21] by 
showing other application examples to demonstrate its generality, 
optimize the number of necessary spectra and/or to establish its limi-
tations. To do so, we apply the approach to the simple synthetic poly-
mers medium density polyethylene (MDPE) and show its accuracy by 
obtaining individual estimated 13C-CPMAS spectra from the amorphous 
and crystalline phases of the polymer [22,23], estimating the amount of 
each component as well as determining their own T1 relaxation times. In 
this context, we also discuss some technical aspects such as the number 

of spectra and the best choice of pulse sequence parameters necessary 
for a good accuracy of the estimations. The approach was also applied to 
estimate the individual amorphous and crystalline 13C-CPMAS spectra of 
the more chemically complex polymer, polyetherketone (PEEK), where 
it was possible to reproduce the experimental spectra from the combi-
nation of the two estimated spectra with very good accuracy, even with 
full overlap of the signal from amorphous and crystalline domains. A 
third example was achieved by applying the approach to the semi-
crystalline polymer isotactic polybutene (iPB-I), where the separation by 
T1 occurred mainly by the mobility difference between the polymer 
backbone and side chain [24,25]. 

Materials and methods 

Samples 

Medium density polyethylene ([CH2CH2]n, 0.94 g/cm3 at 25 ◦C, Tg 
~ -100 ◦C, Tm ~130 ◦C), a semicrystalline polymer with aliphatic 
backbone was obtained from Aldrich and used as received. 

Polyether ether ketone ([-C6H4-O-C6H4-O-C6H4-CO-]n, 1.32 kg/cm3 

at 25 ◦C, Tg~150 ◦C, Tm ~ 350 ◦C), a semicrystalline polymer with ar-
omatic backbone was obtained from Aldrich and used as received. 

Isotactic poly(1 butene) ([-CH2CRH-]n with R = [CH2CH3], 0.95 g/ 
cm3 at 25 ◦C, Tg ~ -20 ◦C, Tm ~135 ◦C) a semicrystalline polymer with 
two backbones and two side-group carbon sites was obtained from 
Aldrich. The as-received polymer pellets were prepared for NMR studies 
by melting at approximately 150 ◦C, followed by slow cooling and 
storage at room temperature for several weeks to ensure complete 
conversion to crystal form I (iPB-I). The detailed procedure can be found 
in reference [25]. 

NMR methods 

13C ssNMR experiments were performed using a BRUKER Avance 3 
Spectrometer operating at frequencies of 100.5 MHz and 400.0 MHz for 
13C and 1H, respectively. A 7 mm double resonance Magic Angle Spin-
ning (MAS) probe (Jackobsen design) with a frequency stability superior 
to 2 Hz was used. Ramped 1H-13C cross-polarization under MAS with 1H 
channel RF amplitude varying between 80 – 100% during the contact 
time was performed as an excitation method. Except when specified, the 
cross polarization time was chosen to provide the highest total intensity, 
being of 1 ms for PE and PEEK samples and 2 ms for iPB-I. Total Sup-
pression of Spinning Sidebands was applied along with MAS of 4.5 kHz 
and high-power dipolar decoupling of 70 kHz (13C CPMAS-TOSS). 13C, 
and 1H 90◦ pulse length of 3.5 and 4.0 μs, respectively, were typically 
used. Recycle delays ranging from 2 – 5 s were used according to the 
sample. Here we analyze by MCR the variability due to the modulation 
of the 13C ssNMR spectra induced by the Torchia T1 (or CP-T1) pulse 
sequence [26]. 

Multivariate curve resolution (MCR) 

A multivariate mathematical procedure was used to estimate the 
pure spectra of the coexisting components from ssNMR data with 
different 13C T1. It is important to stress that the data matrices were from 
each single sample and the variability among experimental spectra was 
induced by a NMR signal modulation generated by a pulse sequences, i. 
e., Torchia CP-T1. The MCR procedure was performed using the software 
The Unscrambler® v10.4.1 (CAMO Software AS). The procedure is 
based in the fact of, if there is different variability among the compo-
nents as a function of the sources of variation present in the data matrix, 
it is possible to unravel the “true” underlying sources of data variation 
with physical meaning and easy interpretation [17]. This is achieved by 
applying a standard Principal Component Analysis (PCA) to estimate the 
probable number of components in the mixture and then calculating a 
rotation of the PCs without the orthogonality constraints, but allying 
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new constraints: non-negative relative intensities and/or non-negative 
spectra. 

Results and discussions 

General description of the experiment and data analysis 

The general idea of the proposed approach is to induce a controlled 
variability in the 13C NMR spectra using a specific pulse sequence and to 
use MCR analysis to separate the spectra of the components according to 
the system property associated to the induced variability. This will be 
carried out by modulating the 13C ssNMR spectrum, acquired under high 
power decoupling and MAS, according to the T1 relaxation times of the 
carbon sites in the sample. To achieve that, we used the pulse sequence 
shown in Fig. 1. It is essentially a 13C Torchia T1– CPMAS pulse 
sequence, i.e., a 1H-13C cross-polarization period followed by a z-filter of 

duration τ and phase cycling designed to produce a exp
(
− τ

T1

)
modula-

tion in the carbon magnetization. The signal acquisition is done under 
MAS, high power 1H decoupling, and, due to the limit of spinning fre-
quency of the available probe, Total Suppression of Spinning Sidebands 
(TOSS) (13C Torchia T1-CPMAS-TOSS). 

By acquiring a set of spectra with different z-filter times τ we obtain a 
dataset which the source of variability is the 13C T1. This set of acquired 
spectra is used to build a data matrix with the spectral intensity where 
the first dimension (matrix columns) are the chemical shifts and second 
dimension (matrix lines) are the τ’s. For the MCR analysis the raw 
spectra were used without pre-processing or normalization, this is 
because the signal decays, as a function of τ, are the main source of 
variation of interest and must be kept in the data matrix. Therefore, in 
this case MCR will provide T1-based spectral decomposition allowing 
the determination of the number of molecular domains with distin-
guishable T1 values as well as their corresponding 13C CPMAS-TOSS 
spectra and relative intensities. 

Applications to semicrystalline polymers 

As a first proof of principle, we apply the proposed approach to the 
commercial semicrystalline polymer MDPE. The 13C ssNMR spectrum of 
MDPE is comprised by two spectral lines at ~33 and ~31 ppm, corre-
sponding to signals from the crystalline and amorphous domains of the 
polymer, respectively. Due to the known differences in the molecular 
packing and mobility in the crystalline and amorphous domains, it is 
expected that the 13C T1 value of segments in the amorphous domains to 
be way shorter than in the crystalline regions. This is clearly observed in 
Fig. 2a, which shows a set of selected 13C CPMAS-TOSS spectra with 

amplitude modulated by exp
(
− τ

T1

)
due to the application of the Torchia 

CP-T1 pulse sequence. The large difference in the decay of the spectral 
lines at 33 ppm and 31 ppm is evident, showing that the Torchia CP-T1 

pulse sequence can induce a high variability between the signals. 
The MCR analysis of the MDPE data was performed using 28 13C 

Torchia T1-CPMAS-TOSS spectra acquired with τ values indicated in 
Fig. 2b (filled symbols). The results indicated the coexistence of two 
components with significant different T1 values, with the corresponding 
estimated pure spectra shown in Fig. 2c. The relative signal intensity of 
the two components as a function of τ was also obtained from the MCR 
analysis and are shown as filled symbols in Fig. 2b. Fig. 2c shows the 
remarkable capacity of the method to separate the two components in 
the MDPE. Furthermore, as shown in Fig. 2b, the approach also provides 
the signal intensity of each component as a function of τ, which can be 

fitted by the Torchia modulation factor ci(0) ∗ exp
(
− τ

T1i

)
to extract the 

corresponding T1 relaxation times and the intensity at τ = 0 s, ci(0). The 
T1 relaxation times obtained from the fits are shown in Fig. 2b. Because 
our main goal was to show the feasibility of separating the components 
based on their different T1 values, we did not acquire spectra with τ long 
enough to achieve a signal decay necessary to estimate the long T1value 
with high accuracy. 

With the ci(0) of each component it is possible to calculate the 
component fraction, i.e, fi = ci(0)/

∑

i
ci(0). In the case of MDPE, the 

fractions corresponding to the short and long T1 components were 
estimated as f1 = 0.66 ± 0.02 and f2 = 0.34 ± 0.02, respectively. It is 
worth mentioning that, despite these factions being directly related to 
the crystalline and amorphous content of the polymer, because the 13C 
CPMAS-TOSS acquisition, they are not quantitative. 

The key-factor for the MCR procedure method is the variability (in 
fact, variance-covariance) and the typical exponential decay of the spin- 
lattice relaxation provide highest signal intensity variation across τ in 
the begin of the decays. Seeking to save experimental time it is better 
select τ’s in this region of higher variability. Furthermore, this region 
results in higher signal/noise ratio and short experimental time, because 
for Torchia CP-T1 experiment, the experimental bottleneck is the long τ 
compared with the other intervals of the pulse sequence. 

To optimize the experimental time, a jack-knifing procedure was 
employed. For this, spectra acquired with selected τ ’s were excluded 
and the MCR fitting results compared with the average and standard 
deviation (Student’s t-test) of random cross-validation results, with the 
same number of τ ’s of the optimized experiment, like Martens’ Uncer-
tainty Test [27]. The best result was obtained excluding the spectra 
acquired with τ > T1/50 and τ < 2T1, considering T1 of the short T1 
component. These values are justified since the ratio (variability) of M at 
τT1/50 and M0 (τ0) is only 2% (e− 0.02/e− 0 = 0.98) and at 2T1 the signal 
intensity is smaller than 15%. The MCR results with this optimized 
dataset are showed in Fig. 2b by the green open symbols, and in Fig. 2c 
by the dashed lines. As it is observed, very little difference, not statis-
tically significant at p = 0.05 after the Student’s t-test, is observed be-
tween the results with the full or the optimized dataset. Thus, if the 
interest is just in the pure component spectra and the corresponding 
relative intensities, it is only necessary that the T1 contrast is kept in the 
data matrix. 

The MCR estimated pure spectra of the two components, obtained 
with the optimized dataset, were multiplied by the corresponding frac-
tions, i.e., 0.66 and 0.34, and summed up to give the MCR estimated 
combined spectra. The result is shown in Fig 2d (thinner red line) along 
with the experimental 13C Torchia T1-CPMAS-TOSS spectrum acquired 
with τ = 1 ms (thicker black line). The MCR estimated and the experi-
mental spectra are in excellent agreement, showing the reliability of the 
method to predict spectra components based in T1 differences. Just to 
give a rough estimation of the time saving the full dataset was acquired 
in ~7 h while the optimized dataset was acquired in ~30 min. 

MDPE was chosen as the first test sample because its simple chemical 
structure, the clear separation between the spectral lines from amor-
phous and crystalline segments and the large difference between the T1 
relaxation times of the two components. However, these characteristics Fig. 1. Diagram of the pulse sequence 13C Torchia T1-CPMAS-TOSS.The basic 

phase cycling is shown in the diagram. 
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can make the usefulness of the approach questionable since there are 
much simpler ways to perform the separation of the components, for 
instance a simple deconvolution of the spectrum. Thus, it is important to 
show that the approach can be applied to a system with higher chemical 
complexity and line overlapping. This is the case of PEEK, a semi-
crystalline polymer which the 13C CPMAS spectrum is comprised by 5 
resolved signals (Fig. 3a), corresponding to the 19 carbons in the 

chemical structure of its repetitive unit. Moreover, each resolved signal 
have two full overlapping components, corresponding to the signals 
arising from amorphous and crystalline domains. 

Fig. 3a shows some selected 13C Torchia T1-CPMAS-TOSS spectra of a 
PEEK sample acquired with different τ values. Differently from the case 
of MDPE, it is not possible to clearly observe different intensity decays of 
the spectral lines, but the narrowing of the lines for increasing τ, due to 

Fig. 2. (a) 13C Torchia T1-CPMAS-TOSS spectra of semicrystalline medium density polyethylene (MDPE) with different duration of the z-filter time τ (relaxation 
period). (b) MCR relative intensities as a function of relaxation periods τ along with the exponential fits and the corresponding T1 values. (c) MCR estimated spectra 
of the components using the full (28 spectra) and the optimized dataset. The optimized dataset is comprised by only 7 spectra with τ values of 1 ms, 10 ms, 100 ms, 
200 ms, 300 ms, 500 ms, and 800 ms, shown by the green open symbols in (b). The curve fits shown in the figure were obtained using the full dataset. Using the 
optimized dataset, the same initial concentrations are obtained but with different (unreliable) T1 values for the long T1 component due to the strong data truncation. 
(d) Comparison between the spectra: experimental 13C Torchia T1-CPMAS-TOSS (τ=1 ms) and the MCR estimated using the optimized dataset. 
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the relative contribution of carbons with different T1 relaxation times. 
The MCR procedure was applied to the full dataset comprised by 28 13C 
Torchia T1-CPMAS-TOSS spectra acquired with τ values ranging roughly 
logarithmically from 10 ms to 40 s and for an optimized dataset using 
only the spectra acquired with τ=200 ms, 550 ms, 1 s, 2 s,4 s, 9 s, and 20 
s, see Fig. 3b. In both cases the results pointed to the coexistence of two 
components with different T1 relaxation times, which are depicted in 
Fig. 3c. The main difference between both MCR estimated spectra is that 
significative broader lines are obtained for the spectrum corresponding 
to the short T1 component. Thus, it is possible to assign the two esti-
mated spectrum as being from crystalline (narrower lines and longer T1) 
and amorphous domain (broader lines and shorter T1). 

The jack-knifing procedure was also employed to select the minimum 
dataset necessary to separate the spectra of the two components. Similar 
to MDPE, it was found that 7 spectra acquired with τ values distributed 
in the region of maximum intensity variation of the short T1 component 
with minimum τ = T1/50 and maximum τ = 2T1 is sufficient to obtain 
the two components and the corresponding weight fractions with good 
accuracy, suggesting that the number of spectra in the dataset does not 
scale with the complexity of the spectrum. Such spectra of the 

components are shown as dashed lines in Fig. 3c and the selected data 
used in the MCR is shown as green open symbols in Fig. 3b. 

Fig. 3b shows the plots of the MCR relative intensities as a function of 
τ obtained using the full and the optimized dataset. The component 
fractions were calculated from the initial relative intensities of the 
optimized dataset as fi = ci(0)/

∑

i
ci(0), resulting in f1 = 0.71 ± 0.03 and 

f2 = 0.29 ± 0.03, for the short and long T1 components, respectively. 
These fractions were multiplied by the corresponding estimated spectra 
and summed up to give the estimated MCR combined spectrum showed 
in Fig. 3d. The comparison of the estimated MCR spectrum and the 
experimental 13C Torchia T1-CPMAS-TOSS spectrum with τ = 200 ms, 
which corresponds to a regular 13C CPMAS-TOSS spectrum, is shown in 
Fig. 3d. The MCR estimated and the experimental spectra are in very 
good agreement. The full dataset was acquired in ~25 h while the 
optimized dataset was acquired in ~ 6.5 h. 

Another case example was provided by the semicrystalline polymer 
iPB-I. As described in the experimental section, this polymer has two 
backbone and two side-chain carbons per repetitive unit. Thus, besides 
the mobility contrast between chains in the polymer crystalline and 

Fig. 3. (a) 13C Torchia T1-CPMAS-TOSS spectra of semicrystalline polyether ether ketone (PEEK) acquired with different duration of the relaxation period τ. (b) MCR 
relative intensities as a function of relaxation periods τ. (c) MCR estimated spectra using the full set of acquired data (28 spectra) and the optimized dataset, i.e., 7 
spectra with τ values of 200 ms, 550 ms, 1 s, 2 s,4 s, 9 s, and 20 s, shown by the green open symbols in (b). (d) Comparison between the experimental 13C Torchia T1- 
CPMAS-TOSS (τ=200 ms) and the MCR estimated combined spectra using the optimized dataset. 
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amorphous domains, a significant mobility difference is also expected 
between the backbone and side-chain carbons. Fig. 4a shows some 
selected 13C Torchia T1-CPMAS-TOSS spectra of an iPB-I sample ac-
quired with different τ values. Shorter decay times is observed for the 
signals at 13 ppm and 27 ppm. These signals correspond, respectively, to 
the CH2 and CH side-chain carbons which are expected to have shorter 
T1 relaxation times due to the local segmental mobility. The signals of 
CH and CH2 backbone carbons, at 32 and 38 ppm, respectively, show 
slow decay times. 

A set of 13C Torchia T1-CPMAS-TOSS spectra acquired with τ values 
ranging, roughly logarithmically, from 10 ms to 50 s (24 spectra) were 
used for the MCR analysis, see Fig. 4b. This resulted in the separation of 
two components with the pure spectra shown in Fig. 4c. As it can be 
seen, the short T1 estimated spectrum consists of two major signals at 13 
ppm and 27 ppm, while the long T1 component, consists mainly of the 
backbone carbon signals. This is because the largest contrast (vari-
ability) in T1 was between the rigid backbone and the side-chain carbons 
instead between the amorphous and crystalline phases. 

Nevertheless, in both estimated spectra there are also minor signals 
at 32 ppm and 38 ppm in the short T1 and at 13 ppm and 27 ppm in long 
T1 estimated spectra. While the minor signals in the short T1 estimated 
spectrum can be assigned as being from backbone carbons in the 
amorphous domain of the polymer, in the long T1 estimated spectra they 
might be associated to some dynamic constrained side chains in the 
crystalline domains. Thus, while this example shows another utility of 
the approach, i.e., to distinguish between signals arising from segment 
with distinct local mobility, it also shows an important drawback, which 
is its inability of separating signal from segments with similar T1 values 
as in the case of side chain carbons in the crystalline and amorphous 
domains. Besides that, since the glass transition temperature of iPB-1 
(~20 ◦C) is just below the measuring temperature (~30 ◦C) it is ex-
pected so intermediate regime motions (kHz frequency scale) in the 
amorphous regions of the polymer. The presence of intermediate regime 
motion reduces the cross-polarization, decoupling and TOSS perfor-
mance, which might strongly suppress the signal from the amorphous 
regions, explaining why these signals are barely observed in the spectra. 

Along the same line as before, we also perform the MCR analysis 
using only an optimized dataset in the same range, i.e., from ~T1/50 
until 2T1 of the shorter T1 component (green point in Fig. 4b). The pure 
spectra are shown as dashed lines in Fig 4c. The full dataset was acquired 
in ~11 h while the optimized dataset was acquired in ~ 1.5 h. Despite 
the good overall agreement between the MCR estimated spectra ob-
tained using the full and the optimized dataset, the dynamic constrained 
side-chain signals are clearly overestimated in the long T1 spectra 
component. This might be a result of the proximity of the T1 values (less 
than one order of magnitude) of the segments in the side chains (shorter 
T1 component) and the polymer backbones (longer T1 component) as 
shown in Fig. 4b. Probably the T1 contrast between the amorphous and 
crystalline domains is still smaller, since the highest variability was 
between backbone and side-chain carbons T1 and/or the amount of one 
of these expected phases is too small to be properly modeled. 

Since the full decay of both components was measured, the T1 
relaxation time could be measured for both components from the 
exponential fit of the relative intensities as a function of τ. The obtained 
values are shown in Fig. 4b and results in the same values obtained 
directly from the exponential fit of the line intensities at 13 ppm (side 
chain CH) and 32 ppm (backbone CH). This confirms that the separation 
provided by MCR was mostly based on the T1 differences between the 
backbone and side-chain carbons. It was expected the same initial in-
tensity for both components, since there are two carbons each, however, 
as already pointed out, the used CPMAS-TOSS pulse sequence is prone to 
underestimate the component with shorter T2 (the more rigid 
backbone). 

As before, using the component fractions obtained from the initial 
relative intensities of the optimized dataset, the estimated MCR com-
bined spectrum was obtained and compared with the experimental one 

in Fig. 4d. Despite the possible overestimation constrained sidechains 
signal, the full MCR estimated spectrum is in perfectly agreement with 
the experimental spectrum, confirming that the procedure is accurate in 
predicting the relative intensities of the components with different T1 in 
the 13C CPMAS-TOSS spectra. However, as already mentioned, these 
relative intensities depend on the 1H- CP excitation and the TOSS spin- 
echo modulation. This is shown in Fig. 4e and 4f, which depict the 
relative intensities and the component spectra obtained for the same 
iPB-I sample, but with the data acquired using a cross-polarization time 
of 200 μs instead 2 ms. As it is shown, the initial relative intensities are 
considerably different from those shown in Fig. 4b. This behavior is 
explained considering the well-known dependence of the signal in-
tensities on the cross-polarization time as a result of differences on the 
1H-13C dipolar coupling and on the T1ρ relaxation time. This is observed 
in the spectrum of the short T1 component shown in Fig. 4f, which, 
besides the two side-chain signals, shows a broad baseline attributed to 
the amorphous domains signals. Therefore, it becomes evident that 
despite the approach being able to separate the spectra of the coexisting 
components and give their relative intensities, the usual care must be 
taken when quantifying domain fractions using 13C ssNMR. 

Drawbacks, applications to more complex systems, and potential 
extensions to other type of induced variability 

In general, the spectra decomposition based on 13C T1 induced 
variability combined with the MCR approach proved to be effective for 
applications in systems composed of molecular domains where the T1 
values are substantially different as the cases of MDPE and PEEK and 
should be similar for other semicrystalline polymers. 

As already discussed, the estimation of the T1 of the longer T1 
component would require acquiring spectra with long z-filter times τ 
using the 13C Torchia T1 pulse sequence, which lead to long experi-
mental times. However, this is not a drawback of the methods itself but a 
characteristic of the T1 measurement. In this respect, the approach 
seems to be more practical for obtaining pure spectra using the opti-
mized dataset, where few spectra can be effectively used to predict pure 
spectra of coexisting components with distinguishable T1 relaxation 
times. In these cases, it is possible either to use T1 values of similar 
samples or to perform simple set-up experiments with lower signal to 
noise to determine the z-filter times τ that produce higher variability of 
the spectra. 

The precision in the determination of the relative intensities of the 
components was demonstrated by the excellent agreement between the 
estimated MCR combined spectra and the experimental ones. Due to 
technical limitations of our equipment, the 13C CPMAS-TOSS pulse 
sequence was used as a method for acquiring the 13C NMR spectra. 
Because this method is not quantitative, the obtained component frac-
tions could not be directly attributed to the amorphous and crystalline 
fraction in the polymers, which became evident in the case of iPB-I. 
Nevertheless, this is a feature of the excitation (CP) and detection 
(TOSS) methods, so pure spectra with quantitative estimation of the 
components can be obtained by using a more quantitative methods such 
as single pulse excitation with long relaxation delays or multiple step 
cross-polarization (Multi-CP), both under fast MAS [28,29]. 

The inability of the method to separate signals from carbons with 
relative similar T1 values became evident in the case of iPB-I where the 
T1 of the side chain carbons in both crystalline and amorphous domains 
are similar to that of the amorphous backbone carbons, or the T1 dif-
ference between amorphous and crystalline is not too large. Further-
more, a too low concentration of the amorphous or crystalline 
component in the studied samples cannot be disregarded and further 
studies with samples with known phase contents will be performed. 
These characteristics made difficult to separate between the signal 
arising from the amorphous and crystalline domains, because the larger 
source of variation was the T1 contrast between the crystalline backbone 
and side-chain carbons. This example demonstrates the main drawback 
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of the approach, which become less reliable when there is small contrast 
in the manipulated parameter, in the present case, T1, and more T1 
components in the sample. Hence, it is important to close check the 
source of variability and the predicted spectra to avoid an over inter-
pretation of the data. 

Another possible drawback concerns systematic errors that could be 
captured by the MCR analysis as source of variability. This includes non- 
random systematic errors in the phase of the spectra and can lead to 
errors in the estimation of the pure spectra. For instance, by varying a 
sensitivity parameter in the MCR analysis it is possible to obtain the pure 
spectra of iPB-I with 3 components. However, the relative intensity 
obtained for one of the components did not vary over all τ values, which 
is not physically possible, since the spectrum acquired with the longer τ 
value has nearly zero intensity. Thus, this extra component was attrib-
uted to a systematic error in the phasing of the spectra. This shows that, 
as in any multivariable data analysis, it is crucial to have a good 
knowledge of the physical meaning of the data and its significance. 

As mentioned in the introduction, the approach used here was 
already used in reference [21] to obtain the pure spectra of molecular 
components with different T1 in samples of chemical pretreated sugar-
cane bagasse. The differences in T1 could be directly associated to dif-
ferences in the molecular mobility and packing of cellulose, xylan and 
lignin macromolecules. We take that as an example of the usefulness of 
the method applied to a more chemically complex system. However, 
there are two main differences to what was shown here. First, the 
excitation method was multiple step cross-polarization (Multi-CP) at 13 
kHz MAS. Thus, the spectra are more quantitative [28–30] and the 
relative intensities can be taken as the fractions of each component. The 
second is that in reference [21] the authors did not use only one sample 
in the data matrix, but a set of samples submitted to different pre-
treatments that differently removed lignin and xylan from the raw 
sugarcane bagasse. Thus, the MCR variability was not only induced by 
the 13C Torchia T1 pulse sequence, but also by the sample pretreatment. 
This procedure was adopted to obtain an extra source of variability that 
helped in the separation between the lignin and xylan signals, which had 
similar T1 relaxation times in the sample. This allowed to nicely obtain 
the estimated pure spectra and the relative intensities of cellulose, and 
two-fold xylan bonded to cellulose, which had their 13C spectral lines 
strongly overlapped in the sugarcane bagasse spectrum. Indeed, such 
separation had been already done in reference [31] using 13C-CP 2D 
INADEQUATE pulse sequence in samples of Arabidopsis thaliana grown 
under 13CO2 enriched atmosphere to achieve 13C labeling in the plan cell 
wall. Of course, the 13C-CP 2D INADEQUATE in the 13C enriched sam-
ples provided many other type of information, but our MCR based 
approach allowed to achieve the specific goal of separating the cellulose 
and two-fold xylan spectra in a more chemically complex sample 
without the necessity of 13C enrichment. 

As a final remark we shall mention that, despite we choose the 13C 
Torchia T1 as a proof of principle, the idea of using pulse sequence 
induced variability combined with multivariate analysis for 13C ssNMR 
signals separation, quantification and classification can be done using 
many other NMR methods, since inducing signal modulations based in 
specific spin interactions and magnetic fields is the heart of modern 
NMR. Thus, the same approach can be used with many different pulse 
sequences. For instance, for 13C ssNMR of natural organic matter, there 

are many types of methods developed for performing spectral editing 
aiming to simplify the spectra. This includes, T1 and T1ρ spectral mod-
ulation, C-H dipolar dephasing methods, chemical shift anisotropy filter, 
filters for CH, CH2, CH3, CN group selection, among others [32]. A MCR 
analysis as done here is achievable using all these methods. Further-
more, there is also the possibility of combining different pulse sequences 
blocks, as well as combined with different samples set, to generate a 
dataset with multiple induced variability, like what was done in the 
above-mentioned study with sugarcane bagasse, which has the potential 
to separate the components of more complex systems based on specific 
physical-chemical properties. Promising results are being obtained even 
at low field NMR, but beyond the scope of this work. 

Conclusions 

We discussed the potential of performing spectral edition and 
component separation in 13C ssNMR by using a combination of pulse 
sequence induced variability and MCR analysis. The general idea was 
demonstrated using a series of 13C CPMAS-TOSS spectra with lines in-
tensities modulated by a factor that depends on the 13C T1 relaxation 
time due to a previous evolution under the well-known Torchia-T1 pulse 
sequence. The set of T1 modulated spectra was used to assemble an input 
dataset for the MCR analysis, which returned the number of components 
with distinct T1 coexisting in the sample, the pure spectra of these 
components as well as their relative signal intensities. The procedure 
was used to deconvolute the 13C CPMAS-TOSS spectra of two semi-
crystalline polymers (MDPE and PEEK) to obtain the pure spectra of the 
amorphous and crystalline domains, their relative intensity and the 
corresponding T1 values. We also apply the approach to a side branched 
polymer (iPB-I) in order to show that the methods can also be potentially 
used to separate signals based on the local mobility of the molecular 
segments, as long it differently affects their T1 relaxation times. A jack- 
knifing procedure along with a Student́s t test was also applied to show 
the minimum number of spectra and range of relaxation period (τ) 
necessary to be acquired to obtain the pure spectra and the corre-
sponding relative intensity of the components with good precision. It 
was demonstrated that the pure spectra of the components and their 
relative intensities can be obtained with good precision using a reduced 
set of Torchia-T1-13C CPMAS-TOSS spectra (6-7 spectra) acquired with 
relaxation periods chosen to maximize the T1 contrast between the 
components. We also discuss the usefulness of the approach in the 
analysis of 13C ssNMR of samples where line overlap is an issue and the 
application of more advanced 2D and 3D is difficult to be achieved. 
Despite being applied only for T1 modulated spectra, the approach can 
be exploited with other types of pulse sequences, inducing single of 
multiple parametric induced variability to be analyzed with the MCR 
procedure. 
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Fig. 4. (a) 13C Torchia T1-CPMAS-TOSS spectra of semicrystalline isotactic poly(1 butene) (iPB-I) with different duration of the z-filter time τ (relaxation period). (b) 
MCR relative intensities as a function of relaxation periods τ along with the exponential fits and the corresponding T1 values. (c) MCR estimated spectra of the 
components using the full (24 spectra) and the optimized dataset. The optimized dataset is comprised by 9 spectra with τ values of 10 ms, 100 ms, 200 ms, 300 ms, 
500 ms, 800 ms, 1 s, 2 s, and 3 s shown by the green open symbols in (b). The curve fits shown in the figure were obtained using the full dataset. Using the optimized 
dataset, the same initial concentrations are obtained but with different (unreliable) T1 values for the long T1 component due to the strong data truncation. (d) 
Comparison between the experimental 13C Torchia T1-CPMAS-TOSS (τ=10 ms) and the MCR estimated spectrum using the optimized dataset. (e) MCR relative 
intensities as a function of relaxation periods τ obtained from 13C Torchia T1-CPMAS-TOSS experiments acquired with cross-polarization time of 200 μs. The intensity 
was calculated with the optimized dataset. The exponential fits and the corresponding T1 values are also shown. (f) Bottom: MCR estimated spectra of the components 
using the 13C Torchia T1-CPMAS-TOSS acquired with the optimized dataset with τ values indicated in (c). Top: Comparison between the experimental 13C Torchia T1- 
CPMAS-TOSS (τ=10 ms) and the MCR estimated spectrum using the 13C Torchia T1-CPMAS-TOSS spectra with cross-polarization time of 200 μs. 
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