

VISTA DA SOCIEDADE BILASIELINA DE AGROMETEOROI

ISSN 2526-7043

www.sbagro.org.br

DOI: http://dx.doi.org/10.31062/agrom.v30.e027129

Accumulated degree-days to reach the main plant developmental stages of irrigated rice cultivars

Silvio Steinmetz^{1(*)}, Ariano Martins de Magalhães Júnior¹, Paulo Ricardo Reis Fagundes¹, Santiago Vianna Cuadra² and Ivan Rodrigues de Almeida²

¹Embrapa Clima Temperado. Rodovia BR 392, km 78, Caixa Postal 403, CEP 96.010-971 Pelotas, RS, Brazil. E-mails: silvio.steinmetz@embrapa.br, ariano.martins@embrapa.br and paulo.fagundes@embrapa.br ²Embrapa Agricultura Digital. Av. Dr. André Tosello, 209 – Cidade Universitária, CEP 13083-866 Campinas, SP, Brazil. E-mails: santiago.cuadra@embrapa.br and ivan.almeida@embrapa.br ^(*)Correponding author.

ARTICLE INFO

Article history:

Received 9 September 2022 Accepted 29 November 2022

Index terms:

Oryza sativa L thermal time phenology

ABSTRACT

The objective of this study was to determine the accumulated degree-days (DD) to reach six plant developmental stages (PDS) of irrigated rice cultivars. Field experiments were carried out at the Estação Experimental Terras Baixas (ETB) of Embrapa Clima Temperado, located in the municipality of Capão do Leão, State of Rio Grande do Sul, Brazil, during 12 crop seasons, using six sowing dates in each. Ten plants of each cultivar were tagged and had each of the PDS monitored throughout the crop cycle. The DD (°C day) were calculated as the sum of the daily values resulting from the difference between mean air temperature (Tm) and the minimal base temperature (Tb = 11 °C), from the emergence until the date of each PDS. The results indicated that the DD to reach anthesis (R4) represented, in the average, about 77% of the total cycle (R9), ranging from 73% for IRGA 421 to 91% for Epagri 109. The vegetative period (from E-emergence to R1) is the one with the highest average DD value, around 48% of the total cycle, presenting also the largest differences between cultivars when compared to the reproductive period 1 (R1-R4) and the reproductive period 2 (R4-R9).

© 2022 SBAgro. All rights reserved.

Introduction

The State of Rio Grande do Sul (RS) is the largest producer of irrigated rice in Brazil, having contributed, in the growing seasons 2017/18, 2018/19 and 2019/20, with about 70% of national production (IBGE, 2020). Although the average grain yield is relatively high (7.7 t ha⁻¹), it is believed that it may be even higher if some aspects related to crop management are improved, reducing the yield gap indicated by Ribas et al. (2020). For this, it is important that the time of application of a particular cultural practice, such as topdressing nitrogen fertilization, water management, control of insect pests, diseases, or the time of harvest, is carried out at the right time, considering plant developmental stage (PDS), as recommended by the South-Brazilian Society of Irrigated Rice - Sosbai (Reunião, 2018).

The problem is that the occurrence of these stages, es-

pecially panicle differentiation (R1), is variable because it is dependent on temperature (Stansel, 1975; Wilson Jr. et al., 2015). For this reason, it is preferable to express the R1 stage and the other PDS through degree-days (DD), or thermal units (TU), instead of the number of days in the calendar (Streck et al., 2006a; Steinmetz et al., 2009a; 2013b).

For this reason, a software called PlanejArroz (http:// planejarroz.cpact.embrapa.br) was developed to estimate the date of occurrence of six PDS, of 41 cultivars, aiming at crop management (Steinmetz et al. 2020; 2021b). As a support to this software, it is important to determine, under field conditions, the accumulated degree-days required to reach the main PDS of the new cultivars released to the market (Steinmetz et al. 2009b; 2017; 2021a).

Knowing the time of occurrence of critical subperiods of the plant development to certain abiotic stresses, such as low or high air temperatures, for example, can also be useful to: minimize the effect of harmful low air temperatures by raising the water depth between the flag leaf collar formation (R2) until the beginning of anthesis (R4) to increase its thermoregulatory effect (Reunião, 2018); evaluate the influence of high air temperatures on spikelet sterility or grain yield (Prasad et al., 2006); establish the relationship between low air temperatures and grain yield (Steinmetz et al., 2013a; Talla et al., 2017). The subperiod from R2 to R4 is also the most indicated for controlling plant diseases such as blast (*Pyricularia oryzae* (Cavara); *Magnaporthe oryzae* B. Couch – forma perfeita) (Reunião, 2018)".

In general, the date of occurrence of the main PDS is determined in field experiments, at different sowing times, using a phenological scale (Watson et al., 2004; Streck et al., 2006a; Steinmetz et al., 2017). It is recommended that the degree-days necessary to reach each of the PDS be determined experimentally in one or more localities, but aiming to extrapolate the results to other areas as indicate the experiences with the DD50 program in the United States (Wilson Jr. et al., 2015), and with PlanejArroz in the State of Rio Grande do Sul, Brazil (Steinmetz et al., 2020; 2021b).

The objective of this study was to determine the accumulated degree-days (DD) needed to reach six plant developmental stages (PDS) of irrigated rice cultivars.

Material and Methods

The field experiments were carried out at the area of the Estação Experimental Terras Baixas (ETB) of Embrapa Clima Temperado, in municipality of Capão do Leão, RS, Brazil (latitude 31° 52′ S; longitude 52° 21' W and altitude 13 m), during a period of 12 crop seasons (2004/2005 -2015/2016). The local climate, according to the Köppen classification, is of the Cfa type, which corresponds to the humid subtropical, with hot summers and without a defined dry season (Wrege et al., 2011). The soil in the experimental area is classified as a typical eutrophic Haplossolo Haplico (Santos et al., 2006). The plots were 5m long and 1.58m wide, consisting of 9 lines spaced by 17.5cm. The basic and topdressing fertilizations and other cultural treatments followed the recommendations of Sosbai (Reunião, 2003) for the 2004/2005 crop season, and the current Sosbai indications for the other crop seasons. The date of emergence was considered when around 50% of the seedlings in the plot were visible above ground level.

In general, twelve cultivars and six sowing dates (from early September to mid-December) were used in each crop season. However, throughout the years, some cultivars were replaced by others, making variable the number of crop seasons for each cultivar. In this work, 34 cultivars were evaluated, involving the four cycles indicated by Sosbai (Reunião, 2018).

In order to facilitate the interpretation of the results, the cultivars were classified, according to their cycles, into seven subgroups. The numbers between parenthesis indicate the average cycle lenght, in days, according to Sosbai (Reunião, 2018) while those between brackets correspond to the number of years in which data were collected for that cultivar. The cultivars evaluated were one of Very Short cycle 1 (VS1): IRGA 421 (95) [7]; two of Very Short cycle 2 (VS2): BRS Atalanta (100) [12]; BRS Ligeirinho (95) [2]; two of Short cycle 1 (S1): BRS 6 "Chuí" (110) [5]; BRS Querência (110) [12]; eleven of Short cycle 2 (S2): BRS Pampa (118) [8]; BRS Firmeza (120) [5]; IRGA 417 (115) [9]; IRGA 422 CL (120) [3]; IRGA 423 (120) [3]; IRGA 430 (120) [1]; Avaxi CL (120) [7]; Inov CL (120) [7]; Titan CL (120) [1]; Guri Inta CL (120) [3]; Puitá Inta CL (120) [5]; nine of Medium cycle 1 (M1): BRS Pelota (125) [6]; BRSCIRAD 302 (128) [3]; BRS Sinuelo CL (130) [7]; BR-IRGA 410 (123) [4]; BR-IRGA 409 (126) [5]; IRGA 429 (124) [1]; IRGA 426 (125) [3]; IRGA 428 CL (125) [2]; Lexus CL (128) [3]; seven of Medium cycle 2 (M2): BRS 7 "Taim (130) [5]; BRS Bojuru (135) [2]; BRS Fronteira (135) [8]; IRGA 424 (132) [8]; IRGA 424 IR (133) [1]; IRGA 425 (132) [3]; IRGA 427 (136) [2]; and two of Long cycle (L): SCS BRS Tio Taka (141) [6]; Epagri 109 (142) [4]. This division into subgroups aimed to meet the needs of the GD Arroz program (Steinmetz et al., 2018) so that the dates of occurrence of the cultivars' stages could be estimated, with reasonable accuracy, from the subgroups to which they belong to. Of the 34 cultivars evaluated in this work, 28, that is 70%, are on the list of all cultivars (40) recommended by Sosbai (Reunião, 2018) for cultivation in the states of Rio Grande do Sul and Santa Catarina.

Ten plants (main stem) of each cultivar were labeled and had their development monitored throughout the cycle, each stage being characterized according to the scale proposed by Counce et al. (2000). Two to three readings were taken per week. Average dates for each stage were obtained from the observations in the 10 plants. The stage R1 (panicle differentiation) was determined by the method described by Steinmetz et al. (2009a).

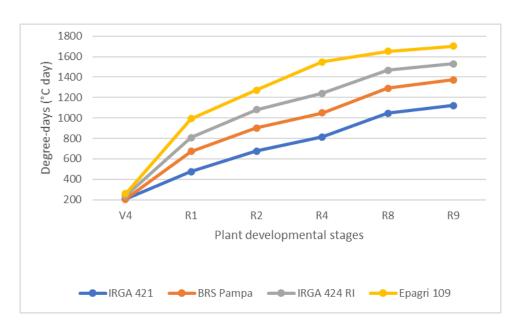
The six stages considered in this work were: V4: plant with four leaves; R1: panicle differentiation; R2: flag leaf collar formation (booting); R4: anthesis (one or more florets); R8: maturity of an isolated grain; R9: complete maturity of the panicle grains. To better characterize the phenological behavior of the cultivars, six subsequent subperiods of plant development were established (E-V4; V4-R1; R1-R2; R2-R4; R4-R8 and R8-R9). Three larger periods were also established, namely, vegetative period (E-R1), reproductive period 1 (R1-R4) and reproductive period 2 (R4-R9), respectively. The reason for the last criterion is that, before the study of Counce et al. (2000), the periods E-R1, R1-R4 and R4-R9 were considered, respectively, as vegetative, reproductive and maturation phases (Yoshida, 1981). On the scale of Counce et al. (2000), the first subperiod corresponds to the vegetative phase and the other two are part of the reproductive phase. In this study, the beginning of the reproductive period will be considered as the R1 stage and not the R0 (panicle initiation), as indicated in Counce et al. (2000).

To calculate the accumulated degree-days starting at crop emergence, the following equation was used:

$$DD = \sum_{i=1}^{n} (Tm - Tb)$$

where DD (°C day) represents the sum of the difference

between the average daily air temperature (Tm) and the base temperature (Tb) of 11 °C (Infeld et al., 1998) from the emergence (i = 1) to each of the six stages (n). The Tm was obtained by the arithmetic mean between the maximum (Tx) and minimum (Tn) daily air temperatures. To calculate the Tm, the thresholds of 34 °C and 21 °C were applied to Tx and Tn, respectively (Slaton et al., 1996). This equation is also used for the calculation of degree-days by the program DD50, a modification of the original concept of growing degree-days that uses upper thresholds for the daily values of Tx and Tn so that air temperatures above these thresholds do not result in faster plant development (Slaton et al., 1996; Wilson Jr. et al., 2015). The degree-days to reach each plant stage represent the average of the six sowing times, in each crop season, and of the several crop seasons in which the cultivar was used.


The statistical comparison of the cultivars regarding the degree-days to reach the six plant stages, the six subperiods and the three periods of plant development was made using the Mood test, a non-parametric method, since the data (residues) do not present normal distribution in the linear model fitting (Siegel & Castellan Jr., 1988).

Results and discussion

The accumulated degree-days (DD) to reach each of the six PDS varied according to the cultivar cycle (Figure 1). For most plant stages, except for V4, there was statistical difference (SD) between some cultivars, especially for those belonging to different subgroups (Table 1).

The DD to reach the R1 stage represented about 48%

Figure 1. Accumulated average degree-days (°C day) from emergence to the plant developmental stages V4 (plant with four leaves), R1 (panicle differentiation), R2 (booting), R4 (anthesis), R8 (beginning of ripening) and R9 (complete ripening of grains), of four irrigated rice cultivars, of Very short (IRGA 421), Short (BRS Pampa), Medium (IRGA 424 RI) and Long (Epagri 109) cycles, obtained during twelve crop seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil.

Table 1. Accumulated average degree-days (°C day) from emergence to each of the six plant developmental stages of 34 irrigated ricecultivars, obtained during twelve crop seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil. The numbers between parenthesisindicate the average cycle of the cultivar, in days (Reunião, 2018), and between brackets the number of crop seasons in which the cultivar was evaluated.

Cultivar	Subgroup	Accumulated average degree-days (°C day) from the emergence to the plant stage					
(Cycle)(Nr seasons)		V4	R1	R2	R4	R8	R9
IRGA 421(95) [7]	VS1	210 ns	476 f	675 h	816 f	1046 i	1122 g
Average (VS1)		210	476	675	816	1046	1122
BRS Atalanta (100) [12]	VS2	211 ns	513 f	729 g	890 e	1128 h	1215 f
BRS Ligeirinho (95) [2]		217 ns	508 f	749 g	889 e	-	1216 f
Average (VS2)		214	511	739	890	1128	1216
BRS 6 "Chuí" (110) [5]	S1	185 ns	605 e	824 f	993 d	1185 g	1298 e
BRS Querência (110) [(12]		208 ns	625 e	848 e	1011 d	1255 f	1341 e
Average (S1)		197	615	836	1002	1220	1320
BRS Pampa (118) [8]	S2	205 ns	674 d	903 e	1049 d	1291 e	1372 d
BRS Firmeza (120) [5]		285 ns	682 d	889 e	1063 d	1227 g	1322 e
IRGA 417 (115) [9]		201 ns	670 d	880 e	1022 d	1256 f	1352 e
IRGA 422 CL (120) [3]		162 ns	691 d	900 e	1045 d	1281 f	1392 d
IRGA 423 (120) [3]		234 ns	680 d	861 e	1023 d	1252 f	1361 e
IRGA 430 (120) [1]		255	730	927	1109	1337	1396
Avaxi CL (120) [7]		205 ns	678 d	898 e	1060 d	1311 e	1410 d
Inov CL (120) [7]		201 ns	679 d	909 e	1073 d	1320 e	1415 d
Titan CL (120) [1]		243 ns	690 d	885 e	1042 d	1310 e	1388 d
Guri Inta CL (120) [3]		245 ns	696 d	919 e	1061 d	1315 e	1390 d
Puitá Inta CL (120) [5]		202 ns	703 d	918 e	1065 d	1322 e	1409 d
Average (S2)		222	688	899	1056	1293	1382
BRS Pelota (125) [6]	M1	198 ns	726 c	962d	1124 c	1334 d	1452 c
BRSCIRAD 302 (128) [3]		204 ns	700 d	944d	1128 c	1396 c	1485 b
BRS Sinuelo CL (130) [7]		199 ns	731 c	940 d	1094 c	1348 d	1438 c
BR-IRGA 410 (123) [4]		190 ns	700 d	966 d	1129 c	1348 d	1444 c
BR-IRGA 409 (126) [5]		212 ns	729 c	955 d	1095 c	1332 d	1400 c
IRGA 429 (124) [1]		263	770	1051	1221	1446	1509
IRGA 426 (125) [3]		212 ns	701 d	936 d	1083 d	1326 d	1407 d
IRGA 428 CL (125) [2]		234 ns	739 c	947 d	1110 c	1343 d	1416 d
Lexus CL (128) [3]		217 ns	699 d	941 d	1111 c	1367 d	1461 c
Average (M1)		214	722	960	1022	1360	1446
BRS 7 "Taim (130) [5]	M2	178 ns	732 c	998 c	1150 c	1352 d	1453 c
BRS Bojuru (135) [2])		211 ns	732 c	962 d	1075 d	-	1437 c
BRS Fronteira (135) [8]		181 ns	741 c	992 c	1135 c	1361 d	1445 c
IRGA 424 (132) [8]		226 ns	760 b	1005 c	1162 c	1411 c	1458 b
IRGA 424 RI (133) [1]		239 ns	807	1080	1242	1468	1529
IRGA 425 (132) [3]		194 ns	685 d	922 e	1076 d	1340 d	1412 d
IRGA 427 (136) [2]		226 ns	792 b	1016 c	1178 c	1405 c	1470 c
Average (M2)		208	750	996	1145	1390	1458
SCS BRS Tio Taka (141) [6]	L	235 ns	944 a	1244 a	1412 a	1649 a	1712 a
Epagri 109 (142) [4]		260 ns	992 a	1272 a	1548 a	1654 a	1704 a
Average (L)		248	968	1258	1480	1652	1708

V4 = plant with 4 leaves; R1 = panicle differentiation; R2 = formation of the flag leaf collar (booting); R4 = anthesis (one or more spikelets);

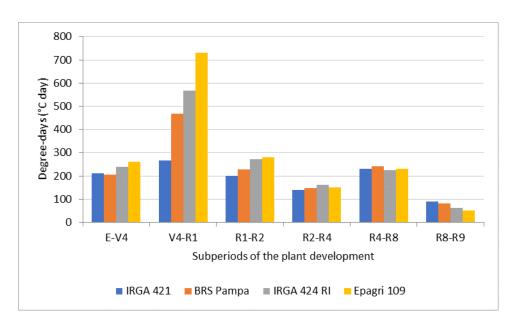
R8 = maturity of an isolated grain; R9 = complete maturity of the panicle grains. Plant developmental stages according to the scale of Counce et al. (2000). VS1 = Very short 1; VS2 = Very short 2; S1 = Short 1; S2 = Short 2; M1 = Medium 1; M2 = Medium 2; L = Long, according to Steinmetz et al. (2018).

Values with equal letters in the column do not differ statistically from each other by the Mood test (at 95% confidence); ns = no statistical significance

of the total cycle (R9), on average of 34 cultivars, ranging from 42% for IRGA 421 (476 over 1122 °C day) to 58% for Epagri 109 (992 over 1704 °C day) (Table 1).

These percentages are similar to those obtained previously with other cultivars (Steinmetz et al., 2009a). In the average of the cultivars the DD to reach the R4 stage represented around 77% of the total cycle (R9), varying from 73% for IRGA 421 (816 over 1122 °C day) to 91% for Epagri 109 (1548 on 1704 °C day) (Table 1). The average percentage of 34 cultivars (77%) is similar to the average value of 74% obtained by Watson et al. (2004), for twelve cultivars, in Arkansas (USA).

The date of occurrence of the R1 stage is highly influenced by temperature, and may present significant differences between cultivars, according to the sowing time, regardless of the subgroups to which they belong to. Early and late sowing tend, respectively, to lengthen and shorten the subperiod from emergence to the R1 stage (Steinmetz et al., 2009ab; Singh et al., 2012). These differences tend to decrease when expressed in DD (Steinmetz et al., 2009a). The photoperiod is another factor that can interfere with the duration of this subperiod, depending on the sensitivity of the cultivar and the sowing time (Yoshida, 1981; Streck et al., 2006b). The DD values in Table 1, to reach the R1 stage, indicate only the differences between the cultivars, as they represent the averages of six sowing times, of 12 or less growing seasons.


The sowing time used in the experiments can be one of the explanations for the differences in DD of this and other studies with irrigated rice in the State of Rio Grande do Sul indicated in the literature. Streck et al. (2006a), for example, for the plant cycle (E-R9) of the cultivars IRGA 417 and BR-IRGA 409 found the values of 1681.7 °C day and 1903.4 °C day, respectively. These values are higher than the 1352 °C day and 1400 °C day, to reach the R9 stage, respectively, of the cultivars IRGA 417 and BR-IRGA 409. It is believed that the late sowing times, in January and even in March, be the reason for the highest DD values found by these authors. In these late sowings, another factor that may have contributed to increase in DD values is the influence of the photoperiod in increasing the cycle of these cultivars, as indicated by the results of Streck et al. (2006b).

Likewise, the delay in the start of sowing by about one month (beginning of October instead of the beginning of September), may explain the lower value (638 °C day) to reach the R1 stage of the medium cycle cultivars, indicated by Infeld et al. (1998), compared with the Medium 1 subgroup of this study (722 °C day), to which the cultivars BR-IRGA 409 and BR-IRGA 410 used in the referred work belong to. In addition to the sowing time, it is likely that part of this difference can be attributed to the other cultivars that belong to the M1 subgroup of this work, as well as those in the group characterized as medium cycle in the work by Infeld et al. (1998).

Of the six subperiods evaluated, the only one that showed statistical diferences between cultivars, especially for those belonging to different subgroups, was between the four-leaf stage and the panicle differentiation (V4-R1) (Table 2). In the other subperiods, there was no statistical significance. Figure 2 illustrates this behavior for four cultivars of different cycles.

When the mean of all cultivars was considered, the

Figure 2. Accumulated average degree-days (°C day) for subperiods E-V4 (from emergence to the stage of four leaves), V4-R1 (from V4 to panicle differentiation), R1-R2 (from R1 to booting), R2-R4 (from booting to anthesis), R4-R8 (from anthesis to the beginning of maturation), R8-R9 (from the beginning of maturation to the complete ripening of grains), of four irrigated rice cultivars, of Very short (IRGA 421), Short (BRS Pampa), Medium (IRGA 424 RI) and Long (Epagri 109) cycles, obtained during twelve crop seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil.

Table 2. Accumulated average degree-days (°C day) between plant developmental stages of 34 irrigated rice cultivars, obtained during twelve crop seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil. The numbers between parenthesis indicate the average cycle of the cultivar, in days (Reunião, 2018), and between brackets the number of crop seasons in which the cultivar was evaluated.

Cultivar	Subgroup	Accumulate	ed average deg	gree-days (° <u>C c</u>	lay) between pl	ant developm	ental stages
(Cycle)(Nr seasons)		E-V4	V4-R1	R1-R2	R2-R4	R4-R8	R8-R9
IRGA 421(95) [7]	VS1	210 ns	267 e	199 ns	140 ns	230 ns	89 ns
Average (VS1)		210	267	199	140	230	89
BRS Atalanta (100) [12]	VS2	211 ns	302 e	216 ns	161 ns	241 ns	87 ns
BRS Ligeirinho (95) [2]		217 ns	292 e	241 ns	140 ns	-	-
Average (VS2)		214	297	229	151	241	87
BRS 6 "Chuí" (110) [5]	S1	165 ns	420d	219 ns	169 ns	209 ns	105 ns
BRS Querência (110) [12]		208ns	418 d	222 ns	163 ns	247 ns	90 ns
Average (S1)		187	419	221	166	228	98
BRS Pampa (118) [8]	S2	205 ns	468 c	229 ns	147 ns	241 ns	81 ns
BRS Firmeza (120) [5]		285 ns	397 d	207 ns	174 ns	215 ns	94 ns
IRGA 417 (115) [9]		201 ns	468 c	210 ns	142 ns	234 ns	96 ns
IRGA 422 CL (120) [3]		162 ns	529 b	209 ns	145 ns	236 ns	112 ns
IRGA 423 (120) [3]		234 ns	446 c	181 ns	162 ns	229 ns	109 ns
IRGA 430 (120) [1]		255	475	197	183	228	58
Avaxi CL (120) [7]		205 ns	473 c	220 ns	162 ns	255 ns	95 ns
Inov CL (120) [7]		201 ns	478 c	230 ns	164 ns	248 ns	93 ns
Titan CL (120) [1]		243 ns	446 c	195ns	157 ns	268 ns	78 ns
Guri Inta CL (120) [3]		202 ns	501 c	215 ns	148 ns	257 ns	87 ns
Puitá Inta CL (120) [5]		245 ns	450 c	223 ns	140 hs	254 ns	75 ns
Average (S2)		222	466	211	157	242	89
BRS Pelota (125) [6]	M1	198 ns	528 b	236 ns	162 ns	228 ns	118 ns
BRSCIRAD 302 (128) [3]		204 ns	496 c	245 ns	184 ns	268 ns	89 ns
BRS Sinuelo CL (130) [7]		199 ns	532 b	209 ns	154 ns	254 ns	90 ns
BR-IRGA 410 (123) [4]		199 hs	502 b	266 ns	163 ns	225 ns	105 ns
BR-IRGA 409 (126) [5]		212 ns	509 c	231 ns	142 ns	236 ns	120 ns
IRGA 429 (124) [1]		263	509 0	281	170	225	63
IRGA 426 (125) [3]		200 212 ns	489 c	235 ns	147 ns	243 ns	80 ns
IRGA 428 CL (125) [2]		234 ns	409 C 506 c	208 ns	163 ns	233 ns	73 ns
Lexus CL (128) [3]		234 ns 217 ns	482 c	208 ns 242 ns	170 ns	256 ns	94 ns
Average (M1)		217 113	506	239	162	241	92
BRS 7 "Taim (130) [5]	M2	178 ns	554 b	265 ns	152 ns	219 ns	99 ns
BRS Bojuru (135) [2]	IVIZ	211 ns	521 b	205 hs 231 ns	113 ns	219115	-
BRS Fronteira (135) [8]		181 ns	521 b	251 ns	143 ns	- 234 ns	- 87 ns
IRGA 424 (132) [8]		226 ns	534 b	245 ns	158 ns	248 ns	78 ns
IRGA 424 RI (133) [1]		239	568	273	162 152 pc	226 265 pc	61 ns
IRGA 425 (132) [3]		194 ns	491 c	237 ns	153 ns	265 ns	72ns
IRGA 427 (136) [2]		226 ns	566 b	225 ns	162 ns	227 ns	65 ns
Average (M2)		208	542	247	149	237	77
SCS BRS Tio Taka (141) [6]	L	235 ns	709 a	300 ns	167 ns	237 ns	63 ns
Epagri 109 (142) [4]		260 ns	732 a	280 ns	151 ns	231 ns	50 ns
Average (L)		248	721	290	159	234	57

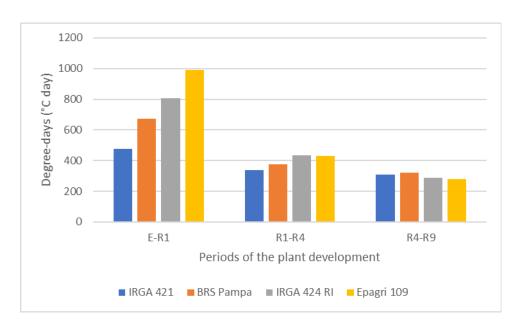
E-V4= from emergence to the stage of 4 leaves; V4-R1= from the stage of 4 leaves to panicle differentiation; R1-R2= from panicle differentiation to the formation of the flag leaf collar (booting); R2-R4= from booting to anthesis (one or more florets); R4-R8= from anthesis to maturity of an isolated grain; R8-R9= from the maturity of an isolated grain to the complete maturity of the panicle grains. Plant developmental stages according to the scale of Counce et al. (2000). VS1 = Very short 1; VS2 = Very short 2; S1 = Short 1; S2 = Short 2; M1 = Medium 1; M2 = Medium 2; L = Long, according to Steinmetz et al. (2018).

Values with equal letters in the column do not differ statistically from each other by the Mood test (at 95% confidence); ns = no statistical significance.

subperiod V4-R1 was the one with the highest DD value (460 °C day), followed by the subperiods R4-R8 (236 °C day) and R1-R2 (234 °C day). Proportionally, these three subperiods represented around 33%, 17% and 17%, respectively, of the DD of the entire cycle (1379 °C day), that is, from the emergence to the complete maturation of the grains (E-R9). These results are in line with those obtained previously by Steinmetz et al. (2009b), for a group of 16 cultivars, of three maturation groups. The value of 17%, relative to the average DD of the cultivars for the subperiod R4-R8 in relation to the DD of the total cycle of this study, is equal to the 17% found by Watson et al. (2004) when evaluating the DD of twelve irrigated rice cultivars in the State of Arkansas (USA).

There was statistical difference (SD) between cultivars for the three periods analyzed, that is, vegetative (E-R1), reproductive 1 (R1-R4) and reproductive 2 (R4-R9) (Table 3). However, SD were more accentuated in the periods vegetative and reproductive 1, probably because these are the periods responsible for the most expressive parts of the total cycle of cultivars, as indicated by the results obtained previously by Steinmetz et al. (2009b). Figure 3 illustrates this behavior, using four cultivars of different cycles.

Considering the average of the cultivars, the E-R1 period was the one with the highest DD value (676 °C day), followed by the R1-R4 (338 °C day) and R4-R9 (317 °C day) periods. Proportionally, these three periods represented around 49%, 28% and 23%, respectively, of the DD of the entire cycle (1379 °C day), that is, from the emergence to the complete maturation of the grains (E-R9). These re-


sults are in line with those previously indicated by Steinmetz et al. (2009b), for a group of 16 cultivars. The value of 23% relative to the average DD of the cultivars for the R4-R9 period, in relation to the DD of the entire cycle of this study, is similar to the 26% found by Watson et al. (2004), for twelve cultivars, in the State of Arkansas (USA).

One of the difficulties to compare the results of this study with those obtained by other authors concerning the length of the vegetative period, which in this work was from emergence to panicle differentiation (E-R1), while other authors assumed that it was from emergence to booting (E-R2) (Watson et al., 2004; Streck et al., 2006a). It is likely that this is because the R2 stage is easily identified in the field, besides avoiding destructive sampling of plants as occurs to determine the R1 stage (Stansel, 1975; Steinmetz et al., 2009a). The problem is that the difference between the stages R1 and R2 can be of great magnitude. In this study it varied between 15 and 26 days, respectively, for the cultivars IRGA 421 and Epagri 109.

Thus, when there is a need to determine the length of the vegetative period with greater accuracy, aiming at some management practice, it is recommended to use a method that allows determining the stage of panicle differentiation (R1) and, if possible, the panicle initiation (PI). This is the case, for example, with nitrogen topdressing (NTD), which should be applied at the panicle initiation stage (R0) according to Sosbai (Reunião, 2018).

As the stage R0 is difficult to be visualized directly on the plant, under field conditions, Steinmetz et al. (2014; 2018) suggest using the degree-day method to estimate the R1 stage, visible to the naked eye, which occurs, on

Figure 3. Accumulated average degree-days (°C day) for the vegetative period (from emergence to panicle differentiation: E-R1), reproductive 1 (from panicle differentiation to anthesis: R1-R4) and reproductive 2 (from anthesis to complete grain maturation: R4-R9), of four irrigated rice cultivars, of Very short (IRGA 421), Short (BRS Pampa), Medium (IRGA 424 RI) and Long (Epagri 109) cycles, obtained during twelve crop seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil.

Table 3. Accumulated average degree-days (°C day) of three periods of the plant cycle, of 34 irrigated rice cultivars, obtained during twelve growth seasons (2004/2005 - 2015/2016), in Capão do Leão, RS, Brazil. The numbers in parentheses indicate the average cycle of the cultivar, in days (Reunião, 2018), and in brackets the number of growth seasons in which the cultivar was evaluated.

Cultivar		Accumulated average degree-days (°C day) in the periods					
(Cycle)(Nr seasons)	Subgroup	E-R1 (VP) R1-R4 (RP1) R4-R9 (RP2)					
IRGA 421(95) [7]	VS1	476 f	339 c	307 b			
Average (VS1)		476	339	307			
BRS Atalanta (100) [12]	VS2	513 f	377 b	325 a			
BRS Ligeirinho (95) [2]		508 f	381 b	327 a			
verage (VS1)		511	379	326			
3RS 6 "Chuí" (110) [5]	S1	605 e	388 b	305 b			
BRS Querência (110) [12]		625 e	386 b	330 a			
werage (S1)		615	387	318			
BRS Pampa (118) [8]	S2	674 d	376 b	323 a			
BRS Firmeza(120) [5]		682 d	382 b	259 b			
RGA 417 (115) [9]		670 d	352 c	330 a			
RGA 422 CL (120) [3]		691 d	354 c	347 a			
RGA 423 (120) [3]		680 d	343 c	338 a			
RGA 430 (120) [1]		730	380	286			
waxi CL (120) [7]		678 d	382 b	350 a			
nov CL (120) [7]		679 d	394 b	342 a			
ïtan CL (120) [1]		690 d	353 c	346 a			
Guri Inta CL (120) [3]		696 d	366 c	328 a			
uitá Inta CL (120) [5]		703 d	362 c	344 a			
verage (S2)		688	368	327			
RS Pelota (125) [6]	M1	726 c	398 b	328 a			
RSCIRAD 302 (128) [3]		700 d	429 a	357 a			
RS Sinuelo CL (130) [7]		731 c	354 c	376 a			
BR-IRGA 410 (123) [4]		700 d	429 a	316 b			
R-IRGA 409 (126) [5]		720 c	373 b	357 a			
RGA 429 (124) [1]		770	451	288			
RGA 426 (125) [3]		701 d	382 b	323 a			
RGA 428 CL (125) [2]		739 c	371 b	306 b			
exus CL (128) [3]		699 d	412 a	350 a			
verage (M1)		721	400	333			
RS 7 "Taim (130) [5]	M2	732 c	417 a	303 b			
RS Bojuru (135) [2]	WILL .	732 c	344 c	362 a			
RS Fronteira (135) [8]		741 c	394 b	310 b			
RGA 424 (132) [8]		741 C 760 b	402 b	326 a			
RGA 424 (132) [8] RGA 424 RI (133) [1]		807	402 b 435	287			
		685 d					
RGA 425 (132) [3]			391 b 397 b	336 a			
RGA 427 (136) [2]		792 b	387 b	292b			
verage (M2)	,	750	396	317			
CS BRS Tio Taka (141) [6]	L	944 a	468 a	300 b			
ipagri 109 (142) [4]		992 a	431 a	281 b			
verage (L)		968	450	291			

E-R1= from the emergence to panicle differentiation (Vegetative Period - VP); R1-R4= from the panicle differentiation to anthesis (Reproductive Period 1 - RP1); R4-R9= from the anthesis to the complete maturity of the panicle grains (Reproductive Period 2 - RP2). Plant developmental stages according to the scale of Counce et al. (2000). VS1 = Very short 1; VS2 = Very short 2; S1 = Short 1; S2 = Short 2; M1 = Medium 1; M2 = Medium 2; L = Long, according to Steinmetz et al. (2018).

Values with equal letters in the column do not differ statistically from each other by the Mood test (at 95% confidence); ns = no statistical significance.

average, four days after the R0 stage (Carli, 2016). In this way, it is possible to plan for NTD to be performed, at least four days before the estimated date of R1, so that nitrogen is available to plants at the R0 stage, as recommended by Sosbai (Reunião, 2018).

The results obtained in this study are an improvement over those obtained previously (Streck et al., 2006a; Steinmetz et al. 2009b; 2021a) because a greater number of cultivars (34) were evaluated, being most of them (around 70%) recommended for cultivation in the states of Rio Grande do Sul and Santa Catarina (Reunião, 2018). These results can be useful if one wants to use the DD of each cultivar, instead of the DD of subgroups of cultivars as is currently done in the PlanejArroz software (Steinmetz et al., 2021b), to estimate the date of occurrence of the main PDS, for cultural management purposes.

Conclusions

The vegetative period (from the emergence-E to the panicle differentiation-R1) is the one with the highest accumulated degree-days, around 48% of the entire cycle, and also the greatest differences between cultivars when compared to the reproductive period 1 (from R1 to anthesis-R4) and reproductive period 2 (from R4 to full maturity of the panicle grains-R9);

The subperiod with the highest accumulated degreedays is between the four-leaf and the panicle differentiation stages (V4-R1), beeing also the one with the largest differences between cultivars.

Authors' contribution

S. STEINMETZ was responsible for the design of the work, acquisition and analysis of data and in writing the article. A. M. MAGALHÃES JÚNIOR, A M. and P. R. R. FA-GUNDES helped in defining the cultivars to be evaluated in each season and in writing the article. S.V. CUADRA and I. R. de ALMEIDA collaborated in writing the article.

Acknowledgements

The authors would like to thank the trainees at Embrapa Clima Temperado who helped in obtaining the phenological data over the years: Alexandre N. Deibler; Anderson B. Schneider; André da R. Ulguim; Eduardo Goulart; Felipe L. de L. Nobre; Igor N. Schneid; Jackson B. A. Pintanel; Jonathan G. Oliveira; Rafael C. Santos; Shemene J. S. A. Audeh; Silas S. Costa; the Assistant Denise D. Dos Santos for her help in tabulating the data; and to Researcher Ricardo A. Valgas for the statistical analysis of the data.

References

CARLI, C. De; STEINMETZ, S.; STRECK, N. A.; MARCHESAN, E.; SILVA, M. R. da. Número de dias e de graus-dia entre a iniciação e a diferenciação da panícula de cultivares de arroz irrigado. **Ciência Rural**, Santa Maria, v. 46, n. 3, p. 428-433, mar., 2016.

COUNCE, P.A.; KEISLING, T.C.; MITCHELL, A.J. A uniform, objective, and adaptive system for expressing rice development. **Crop Science**, Madison, v. 40, n. 2, p. 436-443, 2000.

IBGE. Levantamento Sistemático da Produção Agrícola – LSPA. **Séries históricas**. SIDRA (Banco de Tabelas Estatísticas). Available at: https:// sidra.ibge.gov.br/tabela/6588#resultado. Accessed on: Aug. 13 2020.

INFELD, J. A.; SILVA, J. B. da; ASSIS, F. N. de. Temperatura-base e grausdia durante o período vegetativo de três grupos de cultivares de arroz irrigado. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 6, n. 2, p. 187-191, 1998.

PRASAD, P. V. V.; BOOTE, K. J.; ALLEN JR., L. H. SHEELY, J. E.; THOMAS, J. M. G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperatures stress. **Field Crop Research**, 95, p. 398-411, 2006. Available at: <u>www.sciencedirect.</u> <u>com</u> Accessed on: Oct. 30 2016.

REUNIÃO TÉCNICA DA CULTURA DO ARROZ IRRIGADO, 25., 2003, Balneário Camboriú, SC. **Arroz irrigado**: recomendações técnicas da pesquisa para o Sul do Brasil. Itajaí, SC: SOSBAI, 2003. 126 p.

REUNIÃO TÉCNICA DA CULTURA DO ARROZ IRRIGADO, 32., 2018, Farroupilha. **Arroz irrigado:** recomendações técnicas da pesquisa para o Sul do Brasil. Cachoeirinha: SOSBAI, 2018. 205 p.

RIBAS, G. G.; ZANON A. JR.; POERSCH, A. H.; DUARTE JR. A. J.; RIBEIRO, B. S. M. R.; ROSSATO, I. G.; PILLECO, I. B.; MEUS, L. D.; SILVA, M. R. da; NASCIMENTO, M. de F.; STRECK, N. A.; SOUZA, P. M. de; PEREIRA, V. F. Potencial e lacuna de produtividade de arroz irrigado no Brasil: um estudo de caso. In: MEUS, L. D. **Ecofisiologia do arroz visando altas produtividades**. Santa Maria. Universidade Federal de Santa Maria, 2020. Cap. 5, p. 167-179.

SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A. de; OLIVEIRA, J. B. De; COELHO, M. R.; LUMBRERAS, J. F.; CUNHA, T. J. F. (Ed.) **Sistema brasileiro de classificação de solos**. 2. ed. Rio de Janeiro: Embrapa Solos, 2006. 306 p.

SIEGEL, S.; CASTELLAN, N. J. Jr. Nonparametric statistics for the behavioral sciences. 2nd ed., New York: McGraw-Hill, 1988.

SINGH, A. K.; CHANDRA, N.; BHARTI, R. C.. Effects of genotype and planting time on phenology and performance of rice (*Oryza sativa* L.). **Vegetos**, Patna, v. 25, n. 1, p. 151-156, 2012. Available at: <u>http://icarrcer.in/wp-content/uploads/2016/01/EffectOfGenotype.pdf</u> Accessed on: Jun. 14 2017.

SLATON, N.; HELMS, S.; WELLS, B. DD50 computerized rice management program. In: HELMS, R. R. (Ed.). **Rice production handbook**. Little Rock, AR: University of Arkansas, 1996. p. 24-27. (Miscellany Publication, 192).

STANSEL, J.W. **The rice plant – its development and yield.** In: SIX DECADES OF RICE RESEARCH IN TEXAS. Beaumont: Texas Agricultural Experiment Station, 1975. p. 9-21.

STEINMETZ, S.; FAGUNDES, P. R. R.; MAGALHÃES JÚNIOR, A. M. de; SCIVITTARO, W. B.; DEIBLER, A. N.; ULGUIM, A. da R.; NOBRE, F. L. de L.; PINTANEL, J. B. A.; OLIVEIRA, J. G.; SCHNEIDER, A. B. **Determinação** dos graus-dia e do número de dias para atingir o estádio de diferenciação da panícula de cultivares de arroz irrigado. Pelotas:Embrapa Clima Temperado, 2009a. 29p. (Embrapa Clima Temperado. Boletim de Pesquisa e Desenvolvimento, 88).

STEINMETZ, S.; FAGUNDES, P. R. R.; MAGALHÃES JÚNIOR, A. M. de; SCIVITTARO, W. B.; DEIBLER, A. N.; ULGUIM, A. da R.; NOBRE, F. L. de L.; PINTANEL, J. B. A.; OLIVEIRA, J. G.; SCHNEIDER, A. B. **Soma térmica e número de dias para atingir os principais estádios de desenvolvimento de 16 cultivares de arroz irrigado.** Pelotas:Embrapa Clima Temperado, 2009b. 31p. (Embrapa Clima Temperado. Boletim de Pesquisa e Desenvolvimento, 89). STEINMETZ, S.; DEIBLER, A.; N.; SILVA, J. B. da. Estimativa da produtividade de arroz irrigado em função da radiação solar global e da temperatura mínima do ar. **Ciência Rural**, Santa Maria, v. 43, n. 2, p. 206-211, fev., 2013a.

STEINMETZ, S.; PETRINI, J. A.; ALMEIDA, I. R. de; MAGALHÃES JÚNIOR, A. M. de; FAGUNDES, P. R. R.; DEIBLER, A. N.; RADIN, B.; PRESTES, S. D.; SILVA, M. F. da; BERMUDEZ, D. A. Uso do método de graus-dia para estimar a data de ocorrência dos principais estádios de desenvolvimento de subgrupos de cultivares de arroz irrigado no Rio Grande do Sul. Versão Resumida. Pelotas:Embrapa Clima Temperado, 2013b. 108p. (Embrapa Clima Temperado. Boletim de Pesquisa e Desenvolvimento, 205).

STEINMETZ, S.; CUADRA,S. V.; PEREIRA, C. B.; SANTOS, E. L. dos; ALMEIDA, I. R. de. **GD Arroz: programa baseado em graus-dia para estimar a data de diferenciação da panícula visando a adubação nitrogenada em cobertura.** Pelotas:Embrapa Clima Temperado, 2014. 12p. (Embrapa Clima Temperado. Circular Técnica, 155).

STEINMETZ, S.; CUADRA, S. V.; ALMEIDA, I. R. de.; MAGALHÃES JÚNIOR, A. M. de; FAGUNDES, P. R. R. Soma térmica e estádios de desenvolvimento da planta de grupos de cultivares de arroz irrigado. **Agrometeoros**, Passo Fundo, v. 25, n. 2, p. 405-414, dez., 2017.

STEINMETZ, S.; CUADRA, S. V.; PEREIRA, C. B.; SANTOS, E. L. dos; ALMEIDA, I. R. de. Fundamentos do programa GD Arroz, versões Web e Aplicativo, e seu uso no manejo do arroz irrigado. **Agrometeoros**, Passo Fundo, v. 26, n. 1, p. 1-10, jul., 2018.

STEINMETZ, S.; PEREIRA, C. B.; SANTOS, E. L. dos; CUADRA, S. V.; ALMEIDA, I. R.; STRECK, N. A.; BENEDETTI, R. P.; DUARTE JÚNIOR, A. J.; ZANON, A. JR.; RIBAS, G. G.; SILVA, M. R. da; KROEFF, R. M.; PRESTES, S. D. **PlanejArroz: aplicativo para o planejamento do manejo e estimativa da produtividade em arroz irrigado.** Pelotas: Embrapa Clima Temperado, 2020. 15p. (Embrapa Clima Temperado. Circular Técnica, 205).

STEINMETZ, S.; CUADRA, S. V.; ALMEIDA, I. R. de.; MAGALHÃES JÚNIOR, A. M. de; FAGUNDES, P. R. R. Graus-dia para atingir estádios fenológicos de subgrupos de cultivares de arroz irrigado. **Agrometeoros**, Passo Fundo, v. 29, e026815, 2021a. DOI: 10.31062//agrom.v.29.e026815 STEINMETZ, S.; PEREIRA, C. B.; SANTOS, E. L. dos; CUADRA, S. V.; ALMEIDA, I. R.; STRECK, N. A.; BENEDETTI, R. P.; DUARTE JÚNIOR, A. J.; ZANON, A. JR.; RIBAS, G. G.; SILVA, M. R. da; KROEFF, R. M.; PRESTES, S. D. Fundamentals and applications of PlanejArroz, a software for irrigated rice management and yield estimation. **Agrometeoros**, Passo Fundo, v. 29, e026847, 2021b. DOI: 10.31062/agrom.v29.e026847

STRECK, N.A.; BOSCO, L. C.; MICHELON, S.; WALTER, L. C.; MARCOLIN, E. Duração do ciclo de desenvolvimento de cultivares de arroz em função da emissão de folhas no colmo principal. **Ciência Rural**, Santa Maria, v.36, n.4, p.1086-1093, 2006a.

STRECK, N.A.; BOSCO, L. C.; MICHELON, S.; ROSA, H. T.; WALTER, L. C.; PAULA G. M. de; CAMARA, C.; LAGO, I.; MARCOLIN, E. Avaliação da resposta ao fotoperíodo em genótipos de arroz irrigado. **Bragantia**, Campinas, v.65, n.4, p.533-541, 2006b.

TALLA, A.; SWUAN, D. K.; TEWARI, V. K.; BISWAL, M. P. Significance of weather variables during critical growth stages for hybrid production in subtropical India. **Agronomy Journal**, Madison, v.109, i.5: 1891-1899, 2017. Doi:10.2134/agronj2017.01.0052

WATSON, N.T.; COUNCE, P.A.; SIEBENMORGEN, T.J. Growth stages of 12 rice cultivars (*Oryza sativa L.*) expressed in DD50 thermal heat units. Available at: http://www.arkrice.org/research_results/2004_ PDFs/529_2.pdf Accessed on: Jul. 15 2006.

WILSON JUNIOR., C. E.; NORMAN, R. J.; SLATON, N. A.; BRANSON, J. W.; BOOTHE, D. L. **DD50 computerized rice management program**. Little Rock, AR: University of Arkansas: Division of Agriculture: Cooperative Extension Service [2015?]. (Agriculture and Natural Resources. Computer Technical Series). Available at: https://www.uaex.edu/ publications/PDF/FSA-2124.pdf>. Accessed on: Jul. 15 2015.

WREGE, M. S.; STEINMETZ, S.; REISSER JÚNIOR, C.; ALMEIDA I. R. de (Editores técnicos). **Atlas climático da Região Sul do Brasil:** Estados do Paraná, Santa Catarina e Rio Grande do Sul. Pelotas: Embrapa Clima Temperado; Colombo: Embrapa Florestas, 2011. 211p.

YOSHIDA, S. Fundamentals of rice crop science. Los Baños: IRRI, 1981. 269p.

CITATION

STEINMETZ, S.; MAGALHÃES JÚNIOR, A.M.; FAGUNDES, P.R.R.; CUADRA, S.V.; ALMEIDA, I.R. Accumulated degree-days to reach the main plant developmental stages of irrigated rice cultivars. **Agrometeoros**, Passo Fundo, v.30, e027129, 2022.

REVISTA DA SOCIEDADE BRASILEIRA DE AGROMETEOROLOGI

ISSN 2526-7043

www.sbagro.org.br

DOI: http://dx.doi.org/10.31062/agrom.v30.e027129

Acúmulo de graus-dia para atingir os principais estádios de desenvolvimento da planta em cultivares de arroz irrigado

Silvio Steinmetz^{1(*)}, Ariano Martins de Magalhães Júnior¹, Paulo Ricardo Reis Fagundes¹, Santiago Vianna Cuadra² e Ivan Rodrigues de Almeida²

¹Embrapa Clima Temperado. Rodovia BR 392, km 78, Caixa Postal 403, CEP 96.010-971 Pelotas, RS. E-mails: silvio.steinmetz@embrapa.br, ariano.martins@embrapa.br e paulo.fagundes@embrapa.br ²Embrapa Agricultura Digital. Av. Dr. André Tosello, 209 – Cidade Universitária, CEP 13083-866 Campinas, SP. E-mails: santiago.cuadra@embrapa.br e ivan.almeida@embrapa.br (*)Autor para correspondência.

INFORMAÇÕES

RESUMO

História do artigo:

Recebido em 9 de setembro de 2022 Aceito em 29 de novembro de 2022

Termos para indexação: Oryza sativa L. tempo térmico fenologia

O objetivo deste trabalho foi determinar o acúmulo de graus-dia para atingir seis estádios de desenvolvimento da planta (EDP) de cultivares de arroz irrigado. Experimentos de campo foram conduzidos na Estação Experimental Terras Baixas (ETB) da Embrapa Clima Temperado, município de Capão do Leão, RS, durante 12 safras, sendo utilizadas seis épocas de semeadura em cada safra. Dez plantas de cada cultivar foram marcadas e tiveram os EDP acompanhados durante todo o ciclo. O acúmulo de GD (°C dia) foi calculado por meio do somatório da diferença entre a temperatura média diária do ar (Tm) e a temperatura base (Tb=11°C), da emergência até a data de cada estádio. Os resultados indicaram que os GD para atingir a antese (R4) representaram, na média, cerca de 77% do ciclo total (R9), variando de 73% para a IRGA 421 a 91% para a Epagri 109. O período vegetativo (da emergência-E ao R1) é o que apresenta o maior valor médio de GD, em torno de 48% do ciclo total, e também as maiores diferenças entre as cultivares quando comparado ao período reprodutivo 1 (R1-R4) e ao período reprodutivo 2 (R4-R9).

© 2022 SBAgro. Todos os direitos reservados.

REFERENCIAÇÃO

STEINMETZ, S.; MAGALHÃES JÚNIOR, A.M.; FAGUNDES, P.R.R.; CUADRA, S.V.; ALMEIDA, I.R. Accumulated degree-days to reach the main plant developmental stages of irrigated rice cultivars. Agrometeoros, Passo Fundo, v.30, e027129, 2022.