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Abstract: Soil texture has a great influence on the physical–hydric and chemical behavior of soils. 
In the Amazon regions, due to the presence of dense forest cover and limited access to roads, 
carrying out surveys and mapping of soils is challenging. When data exist, they are relatively sparse 
and the distribution is quite uneven. In this context, machine learning algorithms (ML) associated 
with remote sensor covariates offer a framework to derive digital maps of soil attributes. The 
objective of this study was to produce maps of surface and subsurface soil clay, silt, and sand 
contents in a 13.440 km2 area in the Amazon. The specific objectives were to a) evaluate the gain in 
prediction accuracy when using the P-band of airborne radar as a covariate; b) evaluate two 
sampling approaches (Reference Area—RA and Total Area—TA); and c) evaluate the transferability 
and performance of three ML algorithms: regression tree (RT), random forest (RF), and support 
vector machine (SVM). The study site was divided into three blocks, called Urucu, Araracanga, and 
Juruá, respectively. The soil dataset consisted of 151 surface and subsurface sand, silt, and clay 
observations and 21 covariates (20 relief variables and the backscattering coefficient from the P-
band). Both the RA and TA sampling approach used 114 observations for training the prediction 
models (75%) and 37 for validation (25%). The RA approach was better for the development of sand 
and silt models. Overall, RF derived the most accurate predictions for all variables. The effect of 
introducing the P-band backscattering coefficient improved the sand prediction accuracy at the 
surface and subsurface in Araracanga, which had the highest sand content, with relative 
improvements (RI) of the R2, root mean square error (RMSE), and mean absolute error (MAE) of 
46%, 3%, and 4% at the surface, respectively, and 66.7%, 4.4%, and 5.2% at the subsurface, 
respectively. For silt, the P-band improved the predictions at the surface in Araracanga, which had 
the lowest silt contents among the blocks. For clay, adding the P-band improved the RF predictions 
at the subsurface, with RI of the R2, RMSE, and MAE of 29%, 5%, and 5%, respectively. Despite the 
low observation density, inherently hindered by the low accessibility of the area and high costs of 
sampling thereof, the results showed the potential of ML algorithms boosted by airborne radar P-
band to map soil clay, silt, and sand contents in the Amazon. 
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1. Introduction 
Soil texture is a fundamental physical property that strongly influences many other 

soil properties. The soil particle size fractions, namely clay, silt, and sand, influence soil 
fertility, water infiltration and retention capacity, soil organic matter dynamics, and, thus, 
the ability of soils to support plants, animals and life, and secure biodiversity [1–3]. Soil 
sand, silt, and clay contents are input data needed for most hydrological, climatic, and 
environmental models. They are also used to estimate hard-to-measure soil properties 
such as bulk density, hydraulic conductivity, and water-holding capacity [4,5]. 

The Brazilian Amazon rainforest represents a major challenge for the development 
of systematic soil mapping studies. The region covers an immense area (59% of the 
Brazilian territory) and has a large portion covered by dense evergreen forest [6,7]. 
Additionally noteworthy is the low density of roads, with most of the territory accessed 
only by boat and air transport. In this region, the constant presence of clouds makes it 
difficult to use satellite images and aerial photos obtained by passive (optical, infrared) 
remote sensors [7,8]. This condition makes active sensors, such as radar, potential 
alternatives for observing/surveying the land, serving as support for mapping 
environmental patterns and resources, including soils, hydrology, geology, and 
geomorphology. In fact, the climatic characteristics of the Amazon region and the intense 
land cover by native vegetation motivated the first project of systematic mapping of the 
Amazon region using radar images, the RADAM Project [9], which was a pioneering 
effort by the Brazilian government in the 1970s to survey natural resources using airborne 
radar imagery. At the time, the use of side-looking airborne radar (SLAR) represented a 
technological advance, because the radar images could be obtained both during the day 
and at night and in cloudy conditions, as radar microwaves penetrate most clouds. In the 
RADAM project [9], the X band was used (wavelengths close to 3 cm and frequency 
between 8 and 12.5 GHz) and image mosaics were generated at a scale of 1:250,000. 
Despite the advancement in the RADAM project as a source of important maps for the 
Brazilian Amazon region (geological, geomorphological, soil and vegetation maps), there 
is still a growing demand for more detailed maps of soil attributes to support projects for 
different purposes, including research in soil water and carbon [7]. 

Among the available radar bands, for soil studies in the Amazon region under native 
forest, the P band is ideal because the waves can pass the clouds and the tree canopies. 
Most of the radar research found in the literature concentrates on forestry studies [10–16]; 
however, recently there has been an increase in the application of radar remote sensing 
for soil assessment, mainly focusing on soil moisture [17–22]. As the dielectric behavior of 
the soil is affected by the particle size distribution, by assessing the soil dielectric 
properties, radar remote sensing indirectly assesses soil particle size distribution [23]. In 
the Brazilian Amazon region [8], the addition of relief and vegetation covariates derived 
from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and 
RapidEye) and L-band radar images (ALOS PALSAR) were evaluated for the prediction 
of soil organic carbon stock (CS) and particle size fractions. Overall, the results showed 
that, even under forest coverage, the ALOS PALSAR L-band backscattering coefficient 
improved the accuracy of subsurface clay content predictions (8.2% higher) from 
regression kriging (RK) [8]. 

In addition to the limited availability of P-band radar images, especially in the 
Amazon, the execution of soil surveys in this region faces challenges inherent to its 
remoteness (low accessibility, little infrastructure, high transportation costs) [7,8]. 
Therefore, using existing data and knowledge from soil databases and previous surveys 
is essential to build predictive models of attributes such as soil particle size fractions. In 
this sense, the Reference Area (RA) approach in association with machine learning (ML) 
techniques becomes strategic. The RA approach assumes that a small area, if strategically 
chosen, can be surveyed to build a detailed soil map or soil prediction models with the 
potential to be extended or applied to other (ideally larger) areas with similar soil and 
landscape characteristics [24,25]. In this case, the RA approach would significantly reduce 
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mapping costs, requiring only new field studies to assess the accuracy of the predictions 
in the new area. 

On the other hand, as soil databases are limited in remote areas, the available data 
do not always present density and spatial distribution of soil observations that allow the 
use of techniques commonly used in digital soil mapping, such as models based on 
multivariate statistics and geostatistics. As an alternative, machine learning (ML) 
algorithms have been shown to be promising for mapping soil types and their attributes 
in large areas [1,4,26–31]. They refer to a large class of data-driven algorithms, some of 
which not following any statistical assumptions. As such, ML algorithms have the 
capacity of handling a large number of cross-correlated covariates (collinearity) as 
predictors [32]. 

The objectives of this study were to combine machine learning with remote sensor 
data to map soil surface and subsurface clay, silt, and sand fractions in the Brazilian 
Amazon, aiming specifically to (a) evaluate the gain in prediction accuracy from adding 
the P-band of airborne radar as covariate; (b) evaluate two sampling approaches 
(Reference Area—RA and Total Area—TA); and (c) evaluate the transferability and 
performance of regression tree (RT), random forest (RF), and support vector machine 
(SVM) models. 

2. Materials and Methods 
2.1. Study Area 

The study area is located in the central region of the Amazonas state (at about 640 
km from Manaus), covering an area of about 13.440 km2 between the municipalities of 
Coari and Tefé (Figure 1). The area is remote and practically all covered by equatorial 
Amazon rainforest. The elevation ranges from 23 to 112 m above mean sea level and the 
climate is equatorial (Af), according to Köppen classification, with the temperature of the 
coldest month higher than 20 °C, mean annual precipitation of 2500 mm, and no 
pronounced dry period. 

According to ref. [8], most soils in the region have low base content, high aluminum 
content, and medium-to-high sand content. Some soils in the region have hydromorphic 
characteristics, especially those close to the floodplain of water courses and flat tops. The 
study area was divided into three blocks, which represent the petroleum exploration 
blocks by Petrobras (Brazilian Oil Company), namely Urucu (~4514 km2), Araracanga 
(~3751 km2), and Juruá (~4703 km2), respectively (Figure 1A). The project database 
comprises data from 151 soil profiles surveyed in two field campaigns (year 2008 and 
2018, respectively). 
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Figure 1. (A) Location of the study area in Central Amazon, Brazil; (B) Total area (TA) sampling, 
showing the 75% training and 25% validation random samples; and (C) Reference area (RA) sam-
pling, with the 75% training samples concentrated at the Geólogo Pedro de Moura Support Base, 
and the 25% validation samples lying outside the RA. 

2.2. Soil Sampling Designs 
The development of soil prediction models and maps involves financial and logistical 

investments to support field soil surveys and laboratory and office work. Field sampling 
in the Amazon is restricted by the low accessibility due to the absence of roads and limited 
or no infrastructure to provide essential goods and services (e.g., lodging, food, and med-
ical services). This characteristic of the region makes the execution of soil surveys com-
plex, especially the more detailed ones. 

The Reference Area (RA) for the study was the Geólogo Pedro de Moura Support 
Base (BOGPM), which belongs to Petrobras (Petróleo Brasileiro S.A.) and spans across 
circa 80 km2. The area is only accessed by air or river transport. In 2008, a detailed soil 
survey was carried out at BOGPM. In this area, in addition to the soil map, a database was 
organized containing 114 observations that included soil taxonomic class (Table 1), chem-
ical and physical, as well as co-located relief covariates. From these data, prediction mod-
els of soil types and attributes have been developed for other areas, considering the 
BOGPM as an RA. 
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Table 1. Number (n) and percent of soil taxonomic classes in the 151 field observations. 

SiBCS a Soil Taxonomy b WRB b n Percent (%) 
Argissolo Amarelo Ultisols  Acrisols; Lixisols 41 27.15 
Argissolo Vermelho Utisols (Typic Rhodustults) Acrisols; Lixisols 2 1.32 

Argissolo Vermelho Amarelo Ultisols Acrisols; Lixisols 29 19.20 
Argissolo Acizentado Ultisol (Hapludult) Haplic Lixisol 3 1.98 
Cambissolo Háplico Inceptisols Cambisols 49 32.45 
Cambissolo Flúvico Entisols (Fluvents) Fluvisols 2 1.32 

Espodossolos Humilúvicos Spodosols (Alorthods) Podzols 1 0.66 
Espodossolos Ferri-Humilúvicos Spodosols (Orthods) Podzols 4 2.65 

Neossolo Quartzarênico Entisols (Quartzipsamments) Arenosols 1 0.66 
Neossolos Flúvicos Entisols (Fluvents) Fluvisols 2 1.32 
Planossolo Háplico Ultisols (Albaquults) Planosols 2 1.32 
Gleissolos Háplicos Entisols (Aquents) Gleysols; Stagnosols 14 9.27 

Gleissolos Melânicos Entisols (Fluvaquentic Hu-
maquepts) 

Umbric Gleysols 1 0.66 

Total   151 100 
a Brazilian Soil Classification System [3]. b Partial equivalence of the soil classes to WRB [33] and Soil 
Taxonomy [34]. 

As an RA, the BOGPM serves as a base for soil sampling, for understanding the soil–
landscape relationships of the region, and for training the prediction models aiming to 
transfer this knowledge and derived models to a larger region expanding the soil maps 
and its attribute maps to remote areas at a lower cost. However, the use of the RA ap-
proach assumes that the soil and landscape data observed in the RA represent the new 
areas where the prediction models are intended to be applied for deriving digital maps of 
soils and their attributes. 

In 2018, a field campaign was carried out to visit 37 new soil sites as model and map 
validation sites for the RA approach. In this campaign, 16 remote clearings that allowed 
the landing and take-off of helicopters were identified. At each clearing, soil sites located 
within a 2000 m buffer were visited and sampled, expanding the original soil database 
from 114 to 151 soil profiles (Figure 1; Table 1). 

With this data set, two sampling approaches were tested to develop soil clay, silt, and 
sand content prediction models for the whole area (13.440 km2), which encompasses three 
exploration blocks (Figure 1). It is important to note that, for purposes of organizing the 
cartographic bases, the area was divided into exploration blocks by Petrobras. In this 
study, the same logic was followed for prediction and map generation. Thus, throughout 
this study, the names adopted for each block will be used (Urucu, Araracanga, and Juruá, 
as presented in Figure 1). In the first approach—Reference Area—all 114 soil profiles oc-
curring in the RA (Figure 1C) were used for model training, while the other 37 samples 
outside the RA were used for external validation of the models and maps. In the second 
approach—Total Area—the existence of an RA was ignored inasmuch as all 151 samples 
were pooled together, and the 114 training (75% of the samples) and 37 validation samples 
(25%) were randomly drawn from the pooled database of 151 samples. 

The methodological strategy to predict sand, silt and clay for each soil depth (surf 
and sub) is presented in the flowchart (Figure 2). 
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Figure 2. Flowchart of the methodology used for mapping soil surface (Surf) and subsurface (Sub) 
clay, silt, and sand contents. T—training; V—validation; RT—regression tree; RF—random forest; 
SVM—support vector machine; R2—coefficient of determination. 

2.3. Soil Particle Size Fractions 
During the soil survey, the soil profiles were described morphologically with the sep-

aration of horizons/layers (A, AB, BA, B, C, AC, and CB, for example). For each of the 
horizons/layers, samples were collected for chemical and physical analyses. The sand, silt, 
and clay contents were determined from these samples using the Pipette method [35]. The 
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dataset with values of sand, silt, and clay of what is called the surface layer (surf) is the 
weighted average of these fractions at horizons A, AB, AC, and AE (0–30 cm), while the 
dataset of sand, silt, and clay of the subsurface layer refers to the weighted average of 
these fractions in the BA, BE, and B horizons (0–100 cm) (Equation (1)). The values of the 
sand, silt, and clay fractions in the BC, CB, and C horizons/layers were not considered in 
the calculation, whereas CA and C were included when there was no B horizon, that is, 
for soils such as Quartzipsamments and Fluvents. PSF / =  ∑ PSF ∗  T  ∑ T⁄   (1) 

where: PSFSurf/Sub is the particle size fraction (clay, silt, or sand content) in the desired layer 
(surface or subsurface), in g kg−1; PSFi is the PSF at horizon i, in g kg−1; Ti is the thickness, 
in m, of the portion of the horizon i that lies within the de-sired layer; and n is the number 
of horizons that have a portion within the desired layer. 

2.4. Radar-Derived P-Band and Relief Covariates 
The use of a radar sensor is important in the Amazon region mainly due to atmos-

pheric conditions that include long rainy periods and the presence of clouds that often 
limit the use of passive remote sensors. The exclusive use of P-band (72 cm wavelength) 
microwave radar images in large regions covered by dense vegetation, such as the Ama-
zon rainforest, is essential to generate thematic and relief maps. The longer wavelengths 
(P-band) can penetrate treetops and generate sufficiently strong reflections from the ter-
rain below them to be more sensitive to biomass variations than other bands such as X, C, 
and L, and can be used to generate Digital Elevation Models (DEM). 

A mosaic and a DEM of the study area were obtained from 84 Synthetic Aperture 
Interferometric Radar OrbiSAR-1 images, developed by Orbisat. All appropriate treat-
ments were carried out, aiming to derive a mosaic and a DEM without interpolation fail-
ures, resulting in a hydrologically consistent DEM with 20 m spatial resolution. Primary 
and secondary relief derivatives were derived from the DEM using SAGA GIS version 
7.7.0 [36], including Convergence Index, Topographic Wetness Index, Relative Slope Po-
sition, Channel Network Distance, Channel Network Base Level, LS-factor, Multiresolu-
tion Index of Valley Bottom Flatness, Multiresolution Index of the Ridge Top Flatness, 
Convexity Index, Aspect, Landforms, Profile Curvature, Plan curvature, Valley Depth, 
Slope Height, Mid Slope Position, Slope Gradient, Melton Ruggedness Number, and Flow 
Accumulation. All the data layers were brought to the same projection in ArcGIS (ESRI, 
Redlands, CA, USA). 

The backscatter coefficient (σ°) of the HH polarization of the P-band was derived 
from the radar image mosaic. Reflector points in the ground were used for radiometric 
calibration. All calibration and radiometric corrections were performed using ENVI 
(L3Harris Geospatial, Broomfield, CO, USA). 

2.5. Covariate Selection 
The development of prediction models is a complex process that involves several 

steps. In the specific case of developing prediction models based on ML algorithms, as 
highlighted by ref. [32], conventionally, the choice of covariates is based on minimizing 
errors in input and output values. That is, a priori, no conceptual model of soil processes 
is contextualized. Only the processes that are transmitted by the input data are repre-
sented on the map. 

In this study, two ways of covariate selection to develop ML models were tested: the 
“wrapper method” (WM) and “previous covariate selection” (PCS). In the first case (WM), 
all the covariates were made available for the training of the ML algorithms. In the second 
case (PCS), two steps were followed: (a) evaluation of Pearson’s correlation between par-
ticle size fractions and relief covariates, preferentially keeping the covariates with highest 
correlations; and (b) expert pedological knowledge was used to choose which covariates 
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to keep on, in a case-by-case basis, aiming to better explain the soil–relief–vegetation rela-
tionships (SRV) in the region, as proposed by ref. [7]. 

The existence of multicollinearity was also considered both in the WM ant PCS 
method to make the covariates available to ML algorithms. The assessment of multicol-
linearity, which assesses the increase in variance due to the presence of multicollinearity, 
was performed based on the Variance Inflation Factor (VIF) [37], preferably keeping the 
covariates with VIF < 10 Equation (2). VIF = 1/(1 − R ) (2)

2.6. Dissimilarities in Covariates between the Reference Area and Total Area 
The similarity of the landscape between the areas is important for the adequate trans-

ferability of the models. To examine the constraining effect of the relief characteristics on 
the transfer of the models between the reference area and the Urucu Araracanga and Juruá 
blocks, the descriptive statistics of the covariates were compared and the Gower similarity 
index (GSI; Equation (3)) [38,39] was calculated between the RA and each block, respec-
tively. Sij = ∑ 1 −     (3)

where Sij is the GSI between sites i and j; k represents the relief variables; p is the number 
of variables; range k is the range of variable k. 

The GSI ranges between 0 and 1. A value of 1 means maximum similarity between 
the sites, that is, that the sites differ in no variable, whereas 0 means that the sites differ 
maximally in all their variables. In the literature, the GSI is generally used in its inverted 
form (1—GSI), or the Gower Dissimilarity Index (GDI). In this case, the interpretation is 
the opposite, that is, GDI values close to 0 mean that the two sites are similar, whereas 
values close to 1 mean that they are dissimilar in their variables. The GDI (1—GSI) was 
calculated from the relief covariates plus the backscatter coefficient derived from the radar 
images. 

2.7. Model Training 
The soil surface and subsurface sand, clay, and silt contents were modeled by regres-

sion tree (RT) [40], random forest (RF) [41], and support vector machine (SVM) [42]. The 
regression tree represents a set of rules over a hierarchical sequence for the purpose of 
partitioning the data. Its most important feature is the ability to convert complex decision 
processes into a series of simple decisions [40]. The purpose of RT is to separate observa-
tions into smaller and homogeneous groups in relation to the result of interest, such as 
soil class or attributes [40]. 

Random forest consists of a large number of individual RT models trained from boot-
strap samples of the data [41]. The results of all individual trees are aggregated to make a 
single prediction. This method can also rank the predictor variable’s relative importance 
based on the regression prediction error of out-of-bag (OOB) predictions [41]. 

Support vector machine aims to determine decision limits among categories or con-
tinuous values by fitting optimal hyperplanes in the feature space that separates the sam-
ples minimizing prediction errors [42]. It can be used for classification and regression 
tasks. Table 2 summarizes the hyperparameters of each ML algorithms used in this study, 
R software environment [43]. 
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Table 2. Hyperparameters of machine learning algorithms used in this study. 

Algorithms Hyperparameters Definition Tuning 

RT cp A non-negative number for complexity parameter. 0.001–0.01 
method ANOVA anova 

RF 
mtry number of variables used to produce each tree 1–10 
ntree the number of trees (default: 500) 100–1000 

nodesize the minimum number of data points in each terminal node 5 

SVM 

Kernel type the kernel function polynomial 

type 

svm can be used as a classification machine, as a regression ma-
chine, or for novelty detection. Depending on whether y is a fac-
tor or not, the default setting for type is C-classification or eps-
regression, respectively, but may be overwritten by setting an 

explicit value. 

‘nu-regression’ 
or ‘eps-regres-

sion’ 

degree parameter needed for kernel of type polynomial (default: 3) 2–3 

cost 
The cost of predicting a sample within or on the wrong side of 

the margin. 0–10 

gamma 
parameter needed for all kernels except linear (default: 1/(data 

dimension)) 1 

coef0 parameter needed for kernels of type polynomial and sigmoid 
(default: 0) 

0 

tolerance tolerance of termination criterion (default: 0.001) 0.001 
RT: regression tree; RF: random forest; SVM: support vector machine. 

2.8. Evaluation of the Accuracy of Interpolation Methods 
The coefficient of determination (R2; Equation (4)) was used to evaluate the goodness-

of-fit of the RT, RF, and SVM models for soil sand, clay, and silt content, and the mean 
absolute error (MAE; Equation (5)), and the root mean square error (RMSE; Equation (6)) 
were used to assess their prediction accuracy. R =  1 − ∑ ( )∑ ( )   (4)MAE =   ∑ |O − P |  (5)RMSE =  ∑ (O − P )   (6)

where n is the number of observations, Oi and Pi are the observed and predicted values, 
respectively, and O is the mean of observed values. 

2.9. Evaluation of the Importance of P-Band to Model’s Performance 
To evaluate the importance of adding the backscattering coefficient of the P-band in 

the model, the Relative Improvements (RI) of the R2, RMSE, and MAEwere calculated, 
respectively (Equation (7)). RI = × 100  (7)

where: RI is the relative improvement, in %, accuracy is the R2, MAE, or RMSE, respec-
tively, in is the error value using the P-band, and Out is the error value without using the 
P-band. 

The evaluation of the importance of the P-band was made for the ML models with 
the best performance and the covariate selection method with the best result. It was also 
evaluated according to the best approach (RA or TA) for each soil attribute. 
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3. Results 
3.1. Summary Statistics 

The soil sand, silt, and clay particle size fractions at the surface and subsurface layers 
present a frequency distribution similar to the standard normal (both skewness and excess 
kurtosis approximately 0), except surface clay (Table 3, whole dataset). The training and 
validation datasets follow the same pattern (close to normal distribution), differing in 
terms of minimum and maximum values, which is expected due to data partitioning. 
Based on the mean and median values of the particle size fractions, taken together, the 
textural classes vary from loan at the surface to clay loam at the subsurface. The mean and 
median values of sand, silt, and clay in the validation data dataset of the RA approach 
(V(RA)) indicate that the soils visited in remote areas outside the reference area (accessed 
from the 16 clearings) present the same textural classes as those observed in the reference 
area. 

Table 3. Descriptive statistics of soil texture. 

Variables Dataset n Min Max Mean Median SD Sk K CV (%) 

Sand Surf 
(g kg−1) 

W 151 80 918 458 437 156 0.36 −0.11 34 
T(RA) 114 182 918 468 450 154 0.48 −0.07 32 
V(RA) 37 80 793 428 409 162 0.11 −0.63 37 
VU 21 225 721 425 401 144 0.46 −0.99 - 
VA 11 80 793 507 549 176 −0.89 0.77 - 
VJ 5 151 360 267 273 75 −0.36 −1.38 - 

T(TA) 114 80 883 451 435 150 0.21 −0.36 33 
V(TA) 37 208 918 481 460 173 0.59 −0.19 35 

Sand Sub 
(g kg−1) 

W 151 44 855 353 314 160 0.50 −0.16 45 
T(RA) 114 81 855 351 307 155 0.65 0.24 44 
V(RA) 37 44 695 357 338 178 0.16 −1.09 49 
VU 21 86 674 342 314 169 0.41 −1.00 - 
VA 11 44 695 460 493 172 −0.97 0.51 - 
VJ 5 99 279 192 201 64 −0.12 −1.45 - 

T(TA) 114 44 695 337 308 145 0.24 −0.75 43 
V(TA) 37 102 855 402 381 193 0.54 −0.65 48 

Silt Surf 
(g kg−1) 

W 151 26 792 389 375 145 0.16 −0.27 37 
T(RA) 114 26 687 364 351 131 0.03 −0.12 36 
V(RA) 37 155 792 466 481 160 −0.11 −0.94 34 
VU 21 155 688 476 481 142 −0.42 −0.59 - 
VA 11 202 534 354 321 122 0.19 −1.70 - 
VJ 5 597 792 668 643 78 0.56 −1.59 - 

T(TA) 114 58 792 398 378 139 0.21 −0.40 35 
V(TA) 37 26 696 364 350 160 0.17 −0.32 44 

Silt Sub 
(g kg−1) 

W 151 84 600 339 340 105 0.05 −0.21 31 
T(RA) 114 84 600 332 328 101 −0.04 0.01 30 
V(RA) 37 168 570 361 349 115 0.14 −1.05 32 
VU 21 191 570 359 343 113 0.39 −0.87 - 
VA 11 168 486 309 303 104 0.19 −1.42 - 
VJ 5 388 551 480 479 61 −0.30 −1.61 - 

T(TA) 114 84 600 349 349 100 0.07 −0.21 29 
V(TA) 37 112 582 309 306 116 0.23 −0.43 37 

Clay Surf 
(g kg−1) 

W 151 4 500 152 140 86 0.87 1.12 56 
T(RA) 114 34 500 169 155 82 0.79 1.08 48 
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V(RA) 37 4 423 99 78 77 1.99 5.82 78 
VU 21 6 203 98 86 51 0.23 −0.65 - 
VA 11 4 423 118 73 121 1.34 0.83 - 
VJ 5 27 130 64 57 40 0.66 −1.37 - 

T(TA) 114 4 500 152 139 90 0.87 1.10 59 
V(TA) 37 39 351 154 142 74 0.81 0.33 48 

Clay Sub 
(g kg−1) 

W 151 13 573 308 326 111 −0.28 −0.27 36 
T(RA) 114 13 530 314 330 108 −0.60 0.00 34 
V(RA) 37 70 573 288 267 120 0.52 −0.43 42 
VU 21 70 573 298 288 131 0.36 −0.76 - 
VA 11 150 532 250 200 117 1.12 0.20 - 
VJ 5 259 410 327 340 60 0.13 −1.86 - 

T(TA) 114 70 573 314 327 105 −0.09 −0.57 33 
V(TA) 37 13 530 289 317 127 −0.49 −0.46 44 

Surf: surface; Sub: subsurface; W: whole dataset; T: training dataset; V: validation dataset; RA: ref-
erence area approach; TA: total area approach; VU: Urucu block data set; VA: Araracanga block data 
set; VJ: Jurua block data set n: number of observations; Min: minimum; Max: maximum; SD: stand-
ard deviation; Sk: skewness; K: kurtosis; CV: coefficient of variation. 

The large coefficients of variation (CV) values (> 28%) characterize the heterogeneity 
of sample sets in both training and validation datasets. The range of sand, silt, and clay 
values was high. Sand contents ranged from 80 to 918 g kg−1 and from 44 to 855 g kg−1 at 
the surface and subsurface layers, respectively. 

Clay contents had similar amplitude in the two layers (4.67 to 500 on the surface and 
13 to 573 on the subsurface); however, in average terms, the clay contents in the subsurface 
practically doubled in relation to the surface (from 152 to 308 g kg−1). In the opposite di-
rection, both the average levels of sand and silt tended to decrease with increasing depth 
(from 458 to 353 g kg−1 for sand and from 389 to 339 g kg−1 for silt). 

The feasibility of prediction models that are based on the RA approach depends on 
the transferability of these models to other target areas. Thus, the statistics of the valida-
tion data of sand, silt, and clay in the three blocks (Urucu—VU, Araracanga—VA, and 
Juruá—VJ) separately allow a view of the similarity of the soils. The RA is located in the 
Urucu block, and the ideal is that the training data used there captures the great diversity 
of values found in all blocks. Comparing the minimum, maximum, and average sand val-
ues in the Araracanga (VA) block, both on the surface and in the subsurface, it is noted 
that in this region the soils had higher sand values than in the Urucu and Juruá blocks. In 
the first case (surface), the average sand (507 g kg−1) was 19% higher than in the Urucu 
block (425 g kg−1), while in the subsurface this difference was even greater (34%, 459 g kg−1 
in Araracanga and 342 g kg−1 in Urucu). The statistics of silt data for the Juruá block (VJ) 
highlight the significant superiority of this fraction, both on the surface and in the subsur-
face, in relation to the other blocks. Specifically, in relation to the Urucu block (VU), the 
average value of silt in Juruá was 40% higher (668 g kg−1 against 476 g kg−1) and 34% higher 
(480 g kg−1 against 359 g kg−1), considering the surface and subsurface layers, respectively. 

Additionally, in the Juruá block, the average clay content was 35% lower on the sur-
face in relation to the data from the Urucu block (64 g kg−1 against 98 g kg−1). However, in 
the subsurface this relationship was reversed. The average clay content was 10% higher 
(327 g kg−1) than that found in the Urucu block (298 g kg−1). This inversion explains another 
distinction in the clay data of the Juruá block in relation to the other blocks. In Juruá, the 
average value of clay in the subsurface layer was 5 times higher than on the surface (64 g 
kg−1 against 327 g kg−1). In the other blocks, the increase in clay content with increasing 
depth was also marked but reached lower rates (3 and 2 times higher in the Urucu and 
Araracanga blocks, respectively). 
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Analyzing the statistics of sand, silt, and clay content of the validation dataset (V) 
using the TA approach (dataset 2), it is noted that differences of the average values in 
relation to training dataset (T) were lower. Only the average values of sand and silt, both 
at subsurface layer, presented values 10% higher than in the training dataset. In the first 
case (sand at subsurface) the average value was 19% higher (337 g kg−1 against 402 g kg−1). 
In the second case (silt at subsurface), the average values of the validation dataset were 
11% lower than the training dataset (309 g kg−1 against 349 g kg−1). 

Considering the evaluation of the statistics of the different granulometric fractions, 
in the different depths and approaches (RA and TA), it can be considered that the data 
present a frequency distribution close to the standard normal and that the textural classes 
of the soils of the reference area and the other regions visited present the same textural 
class (Loan and Clay loan). However, there were greater differences between the mean 
values of the sand, silt, and clay fractions of the validation dataset in relation to the train-
ing dataset when using the RA approach. The effect of these differences on the develop-
ment and validation of prediction models is presented below, as well as the relationship 
between the granulometric fractions and the relief and radar covariates. 

3.2. Similarity among the Reference Area and Exploration Blocks 
Table 4 presents the statistics of the prediction covariates. Comparing the data be-

tween the blocks, it is noted that the region of the Juruá block was the one with the greatest 
discrepancy in relation to the reference area. Some relief covariates in the Juruá block had 
very different minimum, maximum, average, and median values compared with the RA, 
which reinforce the dissimilarity between these landscapes (Table 4). The covariates 
CNBL, CND, MRRTF, and MRVBF stand out as those with the most different relief statis-
tics in the Juruá region in relation to RA (Table 4). 

Table 4. Descriptive statistics of the covariates in the study area by blocks. 

 Reference Area (199,167 Pixels) Urucu (11,209,198 Pixels) 
Covariates (Unity) Mean Median SD Min Max Mean Median SD Min Max 

CI (d) 0.03 0.59 16.80 −94.51 96.07 −0.0002 0.54 16.41 −98.08 98.91 
TWI (d) 7.66 7.56 1.06 4.61 12.30 8.07 7.98 1.23 4.33 12.54 

RSP (0–1) 0.48 0.51 0.30 0 1 0.44 0.45 0.30 0 1 
CND (m) 6.40 6.15 4.01 0 25.39 5.41 4.88 3.95 0 29.64 
CNBL (m) 61.72 61.16 5.95 46.56 79.59 63.47 64.07 7.16 23.03 83.16 
MRVBF (d) 5.73 9.38 4.52 0 9.98 6.69 9.82 4.33 0 9.98 
MRRFT (d) 2.84 1.97 2.67 0 7.93 4.02 4.76 3.09 0 7.99 

CXI (d) 51.34 52.41 7.63 0.15 69.19 50.29 51.85 8.89 0 73.19 
ASP (°) 177.10 175.22 106.81 0 360 173.78 171.04 107.03 0 360 
LF (d) 5.32 5.00 2.41 1.00 10.00 5.18 5.00 2.11 1.00 10.00 

ProfC (m−1) −0 −0 0 −0.009 0.01 −0 0 0 −0.013 0.011 
PlanC (m−1) 0.0 3.40 0.0 −0.007 0.01 0 0 0 −0.010 0.013 

SH (m) 4.08 3.55 1.85 1.47 18.94 3.84 3.36 1.79 1.13 25.51 
MSP (%) 0.27 0.25 0.17 0.00 0.82 0.25 0.23 0.16 0.00 0.85 

S (%) 6.23 5.15 4.87 0.00 48.86 5.16 3.70 4.77 0.00 67.20 
MR (d) 0.25 0.16 0.29 0.00 2.49 0.21 0.10 0.27 0.00 2.95 
FC (d) 2451 2996 3090 400 81207 2347 1449 2956 400 14170 

P-band (σ°) 0.43 0.43 0.07 0 0.99 0.44 0.44 0.06 0 0.90 
 Araracanga (9,364,993 Pixels) Juruá (11,730,902 Pixels) 

Covariates (Unity) Mean Median SD Min Max Mean Median SD Min Max 
CI (d) 0 0.49 16.45 −98.78 99.01 0.00 0.78 18.10 −99.21 99.40 

TWI (d) 7.92 7.72 1.41 4.36 12.37 7.58 7.38 1.28 3.86 12.01 
RSP (0–1) 0.41 0.41 0.31 0 1 0.35 0.32 0.29 0 1 
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CND (m) 6.01 5.32 4.83 0 33.92 4.45 3.42 4.08 0 40.50 
CNBL (m) 63.93 65.28 8.85 34.16 85.97 76.03 77.62 8.40 49.88 95.63 
MRVBF (d) 4.96 4.77 4.13 0 9.96 3.70 3.89 2.82 0 9.65 
MRRFT (d) 3.37 2.67 3.15 0 9.73 6.53 9.36 4.19 0 9.98 

CXI (d) 48.32 50.92 11.07 0 73.40 39.58 41.13 8.27 0 63.48 
ASP (°) 171.04 168.26 109.06 0 360 168.08 166.38 109.74 0 360 
LF (d) 5.26 5.00 2.32 1.00 10.00 5.32 5.00 2.03 1.00 10.00 

ProfC (m−1) −0.0 0.0 0.0 −0.011 0.012 −0.0 −0.0 0 −0.014 0.016 
PlanC (m−1) 0.0 0.0 0 −0.012 0.011 0.0 0.0 0 −0.013 0.018 

SH (m) 4.18 3.59 2.11 1.16 27.33 3.62 3.12 1.73 1.14 32 
MSP (%) 0.31 0.29 0.20 0 0.88 0.22 0.18 0.16 0 0.89 

S (%) 5.81 4.25 5.34 0 50.21 5.39 4.02 5.24 0 76.92 
MR (d) 0.24 0.11 0.32 0 3.01 0.18 0.00 0.27 0 4.23 
FC (d) 2332 1421 2993 400 13304 1609 1059 1735 400 6948 

P-band (σ°) 0.45 0.45 0.11 0 0.93 0.43 0.43 0.10 0 0.94 
RA: Referencea area; U: block Urucu; A: block Araracanga; J: block Jurua; n: number of observations; 
Referencea area: (n = 199,167); Urucu: (n = 11,209,198); n Araracanga: (n = 9,364,993); n Jurua: (n = 
11,730,902); Min: minimum; Max: maximum; SD: standard deviation. d: dimensionless. CI—Con-
vergence Index; TWI—Topographic Wetness Index; RSP—Relative Slope Position; CND—Channel 
Network Distance; CNBL—Channel Network Base Level;; MRVBF—Multiresolution Index of Val-
ley Bottom Flatness; MRRFT—Multiresolution Index of the Ridge Top Flatness; CXI—Convexity 
Index; ASP—Aspect; LF—Landforms; ProfC—Profile Curvature; PlanC—Plan curvature; SH—
Slope Height; MSP—Mid Slope Position; S—Slope Gradient; MR—Melton Ruggedness; FC—Flow 
Accumulation; P-band. 

In Figures 3A–C, graphs are presented with the general GDI (red bars) and the same 
index for each covariate (gray bars). According to the GDI values, the RA and the Urucu, 
Araracanga, and Juruá blocks were similar in their relief variables, with GDI values of 
0.155, 0.164, and 0.171, respectively (Figure 3). The dissimilarity increased by about 10% 
departing from the Urucu block towards Juruá (farthest from the reference area). The ar-
eas with the highest GDI were those associated with lowland areas (hydromorphic low-
lands—black arrows on maps) and higher regions located at watershed upper boundaries 
(pixels with more discrete values highlighted with blue arrows on maps). The relief co-
variates that contributed most to differentiate the blocks in relation to RA were MRVBF, 
MRRTF, and RSP. These covariates were also the ones that had the highest correlations 
with the soil particle size fractions under study (Figure 4). From the results seen in Figure 
3, the GDI can be used to both support the choice or to change a previously selected RA. 
In this study, the RA was imposed because it is the only accessible area in the region. 
However, it is possible to conjecture that if we were to change the RA, this change should 
be in the sense of including regions that expand the expression of the covariates that most 
differentiated the exploration blocks in relation to the RA (in this case, MRVBF, MRRTF, 
and RSP). It is important to highlight that these areas are the most difficult to access and 
cause the most undersampling in these environments. 
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Figure 3. Gower index by covariate (blue bars) and general Gower index (red bar and corresponding 
value) among the reference area and Juruá, Araracanga and Urucu (A–C, respectively). The covari-
ates that contributed with the greatest dissimilarity (GDI > 0.25) are highlighted in yellow. DEM—
Digital Elevation Model; CI—Convergence Index; TWI—Topographic Wetness Index; RSP—Rela-
tive Slope Position; CND—Channel Network Distance; CNBL—Channel Network Base Level; LFf—
LS-factor; MRVBF—Multiresolution Index of Valley Bot-tom Flatness; MRRFT—Multiresolution In-
dex of the Ridge Top Flatness; CXI—Convexity Index; ASP—Aspect; LF—Landforms; ProfC—Pro-
file Curvature; PlanC—Plan curvature; VD—Valley Depth; SH—Slope Height; MSP—Mid Slope 
Position; S—Slope Gradient; MR—Melton Ruggedness; FC—Flow Accumulation; P-band. 
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Figure 4. Correlation matrices of remote sensing covariates against soil particle size fractions in the 
training datasets from the reference area (A) and total area (B). ClayA, SiltA, SandA: surface soil 
particle sizes fractions; ClayB, SiltB, SandB: subsurface soil particle sizes fractions. A strong blue 
circle has a maximum positive correlation, a strong red circle has a maximum negative correlation. 
Between these two, the colour tone decreases as the correlation decreases. CI—Convergence Index; 
TWI—Topographic Wetness Index; RSP—Relative Slope Position; CND—Channel Network Dis-
tance; CNBL—Channel Network Base Level; MRVBF—Multiresolution Index of Valley Bottom Flat-
ness; MRRFT—Multiresolution Index of the Ridge Top Flatness; CXI—Convexity Index; ASP—As-
pect; LF—Landforms; ProfC—Profile Curvature; PlanC—Plan curvature; SH—Slope Height; 
MSP—Mid Slope Position; S—Slope Gradient; MR—Melton Ruggedness; FC—Flow Accumulation; 
P-band. 

From the data obtained (Table 4 and Figure 3), it appears that although there were 
differences in the statistics of the covariates of the blocks in relation to the reference area, 
the Gower index of similarity showed that the blocks had a very low dissimilarity value, 
indicating that the models developed in the reference area have the potential to be trans-
ferred to other areas. 

3.3. Remote Sensing Covariates and Soil Particle Size Fractions Relationships 
In both the RA and TA training datasets, all covariates had correlations lower than 

0.50 against soil particle size fractions (Figure 4). In the RA dataset (Figure 4A), the highest 
correlation values for each particle size fraction were found between the topographic 
wetness index (TWI) and clay at the surface (−0.47) and subsurface (−0.45), surface silt 
(0.33) and multiresolution index of ridge top flatness (MRRTF), subsurface silt and TWI 
(0.30), and relative slope position (RSP) and sand at the surface (−0.26) and subsurface 
(−0.35). In the TA dataset (Figure 4B), the highest correlations were surface clay against 
slope (0.39) or TWI (−0.39), subsurface clay against TWI (−0.32), surface silt against channel 
network base level (CNBL) (0.49) or MRRTF (0.49), subsurface silt against TWI (0.44), 
surface sand against CNBL (−0.34), and subsurface sand against CNBL (−0.28). Overall, 
sand content had the lowest correlations against remote sensing covariates. 

The results of the general Gower index (Figure 3) showed that there was little dissim-
ilarity between the RA and the Urucu, Araracanga, and Juruá blocks, with GDI (values of 
0.155, 0.164, and 0.171, respectively). However, even though these dissimilarity values are 
low, most of the covariates that had higher correlations (Figure 4) also had greater contri-
butions of dissimilarity index values in relation to the general Gower index (RSP, CI, 
MRVBF, MRRTF, LF) (Figure 3). 

Importance of predictor covariates for the attributes evaluated in the RF model is 
seen in (Figure 5). 

The source material, relief, vegetation, and climate act in tandem to explain the spa-
tial distribution patterns of soil types in the region. These same covariates were contextu-
alized in the soil–relief–vegetation model (SRV) (Figure 6). 
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Figure 5. Importance of predictor covariates for the attributes evaluated in the RF model. (A) Sand 
Surf (B); Sand Sub; (C) Silt Surf; (D) Silt Sub; (E) Clay Surf; (F) Clay Sub. Surf—surface; Sub—sub-
surface. 

In general, the covariates convergence index (CI), landforms (LF), radar P-band 
backscattering coefficient (P-band), profile curvature (ProfC), RSP, and MRRTF were the 
most important for sand prediction by RF (Figure 5A,B). The CI represents the behavior 
of the surface runoff, which was influenced by the shapes of the terrain, represented by 
LF. The sand contents were higher close to river channels, where CI values were negative, 
meaning converging terrains towards lowland channels. Positive CI values indicate di-
vergent areas, where well-drained tops and flatter slopes predominate, from which sur-
face runoff occurs in all directions. In these areas the sand contents were lower. The RSP 
was applied to identify topographical features and its values ranged from 0 to 1. The val-
ues closer to 0 were characterized by lowland regions, that is, the V- and U-shaped valleys, 
which have high levels of sand. Values closer to 1 represent upper slopes and ridge tops 
with low sand contents. The profile curvature (ProfC) expressed the difference between 
convex curvatures of the concave ones, influencing the surface flow velocity from the 
higher to the lower parts (Figure 6). It also allowed greater distinction between well-
drained soils on ridge tops (convex surfaces) and imperfectly drained soils on concave to 
flat surfaces, for instance in V- and U-shaped valleys. 

The covariates MRRTF, TWI, multiresolution index of valley bottom flatness 
(MRVBF), and ProfC had positive correlations with silt. The flat tops on the uplands were 
represented by high MRRTF values, whereas the valley bottoms had the highest MRVBF 
values. These covariates, associated with TWI, characterize the spatial distribution of soil 
saturation zones, adding important information to locate hydromorphic soils. In turn, 
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these zones had the higher silt contents (Figure 6) and are the zones where the lowlands 
(MU2—Aquents, Aquepts) and uplands with flat tops (MU4—Aquults, Aquents) occur. 
Again, the ProfC helped to separate the areas of well-drained soils (convex surfaces) from 
those with imperfectly drained ones (concave to flat surfaces), mainly at the subsurface. 

 
Figure 6. Soil–relief–vegetation relationships for soil sand, silt, and clay contents in the study area. 
Green arrow—positive correlation with the covariate; red arrow—negative correlation with the co-
variate. MU—mapping unit; Fac—Flooded Plain Open Tropical Forest; FDA—Dense Highland 
Tropical Forest; Fdb—Planalto Open Tropical Forest; APf—River plains; C11—Well-drained flat top 
areas; T21—Tabular Interfluves; EP2—Biplain-plain surfaces; H.S.—Holocene Sediments; P.S.—
Pleistocene Sediments. (Source: modified from ref. [7]). 
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The combination of the slope and TWI covariates allowed identifying the regions 
with the highest clay contents, where the MU1 (Ultisols, Inceptisols) and MU3 (Ultisols, 
Inceptisols) units are found (Figure 6). The MU1 regions were represented by steeper 
slopes generally closer to large drainage networks where the slope influences the speed 
of surface and subsurface flows. The slope has great potential to help in the identification 
of Ultisols areas where the highest clay contents predominate. The MU3 unit occurs on 
well-drained tops with smoother slopes and relatively flat to smoothly wavy relief with 
good drainage, also with high clay contents (Figure 6). 

3.4. Model Prediction Performance 
Random forest derived the best predictions, with the least errors, for all soil particle 

size fractions at both layers, followed by SVM (Tables 5–8). Regression tree is the simplest 
among the three methods tested. It creates a series of decision rules based on the covariates 
to make a prediction at a terminal leaf. As such, it was uncapable of outperforming RF, 
which is a combination of RTs, and SVM. On the other hand, RF outperformed SVM, 
meaning that decision rules derived from a series of RTs are better than a single set of 
hyperplanes. In fact, in general the prediction errors were more similar between RT and 
SVM than between SVM and RF. Favoring RF is the fact that it uses random selections of 
covariates and training and validation (OOB) sets for building each tree, which control 
overfitting minimizing validation errors. 

Table 5. Accuracy assessment soil surface and subsurface sand content predictions using the Refer-
ence Area (RA) sampling design. 

  RT RF SVM 
Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Sand Surf 
PCS 

T 0.34 124 96 0.93 67 53 0.47 113 91 
VU 0.09 144 117 0.24 131 113 0.07 141 125 
VUA 0.03 165 129 0.19 140 116 0.01 162 140 
V 0.01 176 135 0.24 144 120 0.08 173 149 

VUJ 0.03 166 128 0.31 138 119 0.12 162 141 

Sand Surf 
WM 

T 0.36 122 96 0.94 67 53 0.57 106 86 
VU 0.21 132 103 0.20 132 114 0.04 144 129 
VUA 0.06 164 128 0.18 141 116 0.20 140 118 
V 0.03 175 132 0.19 148 123 0.19 145 123 

VUJ 0.09 157 113 0.22 143 125 0.08 151 134 

Sand Sub 
PCS 

T 0.45 114 90 0.92 63 50 0.47 113 95 
VU 0.09 161 137 0.24 147 126 0.20 148 126 
VUA 0.01 181 152 0.15 163 140 0.18 166 141 
V 0.00 190 155 0.11 165 143 0.24 168 139 

VUJ 0.02 179 145 0.17 154 132 0.21 155 127 

Sand Sub 
WM 

T 0.48 111 87 0.92 64 51 0.57 105 86 
VU 0.14 159 133 0.36 137 113 0.13 154 128 
VUA 0.05 181 155 0.25 158 134 0.15 173 146 
V 0.00 194 163 0.16 162 138 0.17 167 141 

VUJ 0.03 183 149 0.25 147 123 0.17 148 124 
PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data 
set; VU: Urucu block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: 
Urucu/Araracanga/Jurua block validation dataset; VUJ: Urucu/Jurua block validation dataset. 
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Table 6. Accuracy assessments of soil surface and subsurface silt content predictions using the Ref-
erence Area (RA). 

  RT RF SVM 
Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Silt Surf 
PCS 

T 0.49 93 72 0.91 56 43 0.50 93 71 
VU 0.19 163 138 0.58 130 112 0.33 130 107 
VUA 0.07 154 129 0.37 120 99 0.17 175 123 
V 0.07 175 144 0.36 141 114 0.28 185 133 

VUJ 0.18 189 158 0.52 155 131 0.38 156 124 

Silt Surf 
WM 

T 0.46 95 73 0.92 55 42. 0.58 87 65 
VU 0.26 163 144 0.46 139 120 0.24 143 122 
VUA 0.06 157 136 0.26 128 106 0.13 149 119 
V 0.08 174 149 0.26 149 122 0.22 159 128 

VUJ 0.26 186 161 0.42 164 140 0.26 158 134 

Silt Sub 
PCS 

T 0.47 73 58 0.91 43 32 0.39 79 61 
VU 0.36 90 72 0.51 89 71 0.38 91 77 
VUA 0.38 86 72 0.41 88 73 0.33 111 91 
V 0.26 99 80 0.46 89 74 0.39 131 101 

VUJ 0.22 106 83 0.56 90 73 0.39 126 93 

Silt Sub 
WM 

T 0.49 72 57 0.92 43 32 0.53 72 56 
VU 0.35 89 72 0.42 93 74 0.42 84 67 
VUA 0.33 89 73 0.31 93 76 0.39 91 76 
V 0.22 102 81 0.37 94 78 0.39 115 89 

VUJ 0.21 106 83 0.50 95 78 0.37 120 88 
PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data 
set; VU: Urucu block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: 
Urucu/Araracanga/Jurua block validation dataset; VUJ: Urucu/Jurua block validation dataset. 

Table 7. Accuracy assessment of soil surface and subsurface clay content predictions using the Ref-
erence Area (RA) sampling design. 

  RT RF SVM 
Atributtes DATA R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Clay Surf 
PCS 

T 0.53 55 41 0.91 31 23 0.47 61 45 
VU 0.09 73 59 0.24 71 59 0.21 67 53 
VUA 0.04 90 70 0.02 92 72 0.08 115 73 
V 0.03 90 73 0.02 92 73 0.04 111 73 

VUJ 0.06 78 65 0.19 76 64 0.17 69 57 

Clay Surf 
WM 

T 0.54 54 40 0.92 31 23 0.56 56 41 
VU 0.08 74 59 0.18 71 59 0.27 65 50 
VUA 0.04 89 70 0.02 91 71 0.17 82 61 
V 0.03 90 73 0.02 91 72 0.10 96 72 

VUJ 0.05 78 66 0.15 75 63 0.15 91 68 

Clay Sub 
PCS 

T 0.61 67 53 0.91 39 30 0.58 70 52 
VU 0.16 119 90 0.20 114 86 0.14 120 93 
VUA 0.02 136 101 0.08 122 95 0.17 117 95 
V 0.02 130 93 0.07 116 89 0.13 113 92 

VUJ 0.15 113 81 0.18 107 80 0.12 114 90 

Clay Sub 
WM 

T 0.62 65 52 0.92 38 29 0.65 65 49 
VU 0.02 138 103 0.18 115 87 0.07 128 99 
VUA 0.00 146 111 0.08 120 93 0.14 118 93 
V 0.00 141 104 0.07 114 88 0.03 152 116 
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VUJ 0.03 131 95 0.17 108 81 0.02 170 131 
PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data 
set; VU: Urucu block validation dataset; VUA: Urucu/Araracanga block validation dataset; V: 
Urucu/Araracanga/Jurua block validation dataset; VUJ: Urucu/Jurua block validation dataset. 

Table 8. Accuracy assessment of soil surface and subsurface sand, silt, and clay content predictions 
using the Total Area (TA) sampling design. 

  RT RF SVM 
Atributtes Data R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 
Sand Surf 

PCS 
T114 0.51 104 79 0.93 62 49 0.52 105 84 
V37 0.00 198 152 0.11 161 124 0.15 163 127 

Sand Surf 
WM 

T114 0.51 104 79 0.94 64 50 0.77 73 44 
V37 0.00 198 152 0.13 159 124 0.03 209 158 

Sand Sub 
PCS 

T114 0.54 97 80 0.93 58 47 0.40 113 94 
V37 0.03 202 148 0.23 174 137 0.21 180 138 

Sand Sub 
WM 

T114 0.55 97 80 0.95 59 48 0.81 64 41 
V37 0.03 202 148 0.22 177 145 0.19 207 162 

Silt Surf PCS 
T114 0.58 89 69 0.91 53 41 0.50 98 78 
V37 0.04 182 140 0.14 147 113 0.20 142 108 

Silt Surf WM 
T114 0.92 54 42 0.92 54 42 0.60 89 72 
V37 0.17 144 111 0.17 144 111 0.14 147 112 

Silt Sub PCS 
T114 0.49 71 57 0.91 39 31 0.42 76 61 
V37 0.06 123 97 0.03 120 98 0.29 102 79 

Silt Sub WM 
T114 0.51 69 55 0.92 38 30 0.55 69 54 
V37 0.04 126 99 0.06 116 94 0.21 107 84 

Clay Surf 
PCS 

T114 0.56 58 44 0.91 34 25 0.59 60 46 
V37 0.23 71 58 0.23 65 50 0.15 70 52 

Clay Surf 
WM 

T114 0.58 57 43 0.92 33 25 0.65 56 42 
V37 0.20 74 62 0.21 65 48 0.12 80 62 

Clay Sub PCS T114 0.54 70 55 0.93 38 30 0.57 70 56 
V37 0.19 117 94 0.31 107 81 0.29 114 92 

Clay Sub WM T114 0.51 73 58 0.93 39 30 0.61 68 53 
V37 0.21 116 93 0.30 107 82 0.26 122 94 

PCS—Previous Covariate Selection; WM—Wrapper Method; T: Training dataset; V: validation data 
set; RT: regression tree; RF: random forest; SVM: support vector machine. 

The fitted model R2 varied from 0.34 to 0.62 for RT models, from 0.91 to 0.95 for RF, 
and from 0.39 to 0.81 for SVM models. The validation RMSE, considering all 37 validation 
samples, varied across all sampling approach and methods of covariate selection in the 
ranges of 144 to 198 for the surface sand and 162 to 202 (g kg−1) for the sand subsurface 
layer. For silt, the range was from 141 to 182 at the surface layer and from 89 to 102 (g kg−1) 
at the subsurface layer. The RMSE range of clay was from 65 to 111 at the surface and 107 
to 141 (g kg−1) at the subsurface layer. 

The RA sampling approach outperformed the TA approach for the surface and sub-
surface sand and silt contents, whereas surface and subsurface clay contents were best 
predicted using TA approach. The PCS covariate selection method was the best option to 
predict surface sand, and surface and subsurface silt and clay contents, whereas WM was 
the preferred choice only for subsurface sand prediction. 

3.5. Relative Improvement (RI%) from Adding the Radar P-Band 
Considering the combination of best results (the algorithms—RF, RT and SVM, the 

approach—RA or TA, and the covariate selection method—WM or PCS), the gain in 
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accuracy of the models, with and without the P-band, was evaluated applying the RI in-
dex (%) on the R2, RMSE and MAE metrics at surface and sub surface layers (Figures 7 
and 8, respectively). Considering the surface layer (Figure 7), in the prediction of sand and 
silt, the RA approach had better results and so the metrics were separated by blocks 
(Urucu, Araracanga, and Jurua), how much the P-band influences the accuracy when the 
model generated in the RA is transferred to other blocks was evaluated. For clay, as the 
TA approach performed better, the metrics do not distinguish between blocks. Note that 
the introduction of the P-band had a greater effect on the R2 results. For the sand fraction, 
the introduction of the P-band allowed the R2 (the proportion of the variation of a response 
variable is explained by the variation of other explanatory variables) to increase by 41%, 
46%, and 24% for the Urucu, Araracanga, and Juruá blocks, respectively. However, when 
analyzing the RMSE and MAE metrics, the gain was low (<5%). In the case of silt, the 
introduction of P-band also increased R2, but to a lesser extent (7.4%, 12%, and 10.6% for 
Urucu, Araracanga, and Juruá, respectively). As in the case of sand, the change in the 
RMSE and MAE metrics for silt prediction was low (between 0% and 1.8%). In the case of 
the clay attribute, the introduction of the P band did not change the metric values (RI% = 
0). 

Analyzing the subsurface layer (Figure 8), the pattern observed on the surface was 
maintained. In other words, the use of radar images is important to generate maps of co-
variates (in this case, the relief and hydrographic attributes) under native forest cover; 
however, the effect of the backscatter coefficient with polarization HH, by itself, did not 
bring a significant gain (≥10%) in the accuracy of the models (RMSE and MAE). For exam-
ple, adding the P-band improved the RF predictions of clay content at the subsurface 
layer, with RI of the R2, RMSE, and MAE of 29%, 5%, and 5%, respectively.  
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Figure 7. Accuracy with and without radar P-band for surface sand, silt, and clay prediction with the best model and approach. 
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Figure 8. Accuracy with and without radar P-band for subsurface sand, silt, and clay prediction with the best model and approach. 
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3.6. Soil Particle Size Fraction Maps 
In the study area, sand contents ranged from 303 to 721 g kg−1 at the surface (Figure 

9), and from 212 to 635 g kg−1 at the subsurface (Figure 10), decreasing slightly with depth. 
The lowest sand values were predicted in hydromorphic flat tops and areas with steeper 
slopes (Figures 9 and 10). The highest levels of sand were present in the floodplain regions, 
close to the channels of the large rivers and streams, and on terraces around the main 
watercourse (U-shaped valleys). Large sand contents were also found in the more embed-
ded valleys (V-shaped valleys) of slope regions. These environments are characterized by 
the accumulation of sandy sediments from natural erosive processes, making the low-
lands clogged. In these areas, the predominant soils were classified as Aquents or Aquepts 
(MU2 unit). 

 
Figure 9. Map of the sand content at the surface layer. (Map generated using Reference Area ap-
proach, Random Forest, and Previous Covariate Selection). 
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Figure 10. Map of the sand content at the subsurface layer. (Map generated using the Reference Area 
sampling design, Random Forest, and Wrapper Method). 

Predicted silt contents varied from 209 to 577 g kg−1 at the surface (Figure 11), and 
from 215 to 517 g kg−1 at the subsurface (Figure 12). The largest silt contents were found 
in the areas of hydromorphic flat tops (Figures 11 and 12). These areas usually occur at 
the highest elevations of the study area, at the upland watershed boundaries. Flat relief 
and insufficient drainage characterize these areas, where there is a predominance of Hap-
ludults, Aquults, and Aquents (MU4 unit) (Figure 6). Relevant silt values were also found 
in lowland regions, where Aquents (MU2) occur. 
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Figure 11. Map of the silt content at the surface layer. (Map generated using the Reference Area 
sampling design, Random Forest, and Previous Covariate Selection). 

 
Figure 12. Map of the silt content at the subsurface layer. (Map generated using the Reference Area 
sampling design, Random Forest, and Previous Covariate Selection). 

Predicted clay contents ranged from 47 to 303 g kg−1 at the surface (Figure 13), and 
increased at the subsurface, ranging from 154 to 458 g kg−1 at the subsurface (Figure 14). 
The increase of clay with depth is consistent with the occurrence of Ultisols, which present 
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a diagnostic argillic B horizon at the subsurface. The highest clay contents occur in areas 
with steep slopes and well-drained tops (Figures 13 and 14). These regions were repre-
sented by the mapping units MU1 and MU3 where there is a predominance of Ultisols. 

 
Figure 13. Map of the clay content at the surface layer. (Map generated using the Total Area sam-
pling design, Random Forest, and Previous Covariate Selection). 

 
Figure 14. Map of the clay content at the subsurface layer. (Map generated using the Total Area 
sampling design, Random Forest, and Previous Covariate Selection). 
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4. Discussion 
The challenge of mapping soil fraction in the Amazon rainforest comes from the dif-

ficulties in obtaining soil data that are related with the fact that a major portion of the area 
is covered by a dense evergreen forest, a low density of roads, with most of the territory 
accessed only by boat and air transport. Additionally, the difficulty of obtaining data on 
representative environmental covariates, because of the constant presence of clouds in the 
region, makes it difficult to use satellite images and aerial photos obtained by passive 
(optical, infrared) remote sensors. Despite all these limitations, the results of this study 
illustrate the potential advantages of using ML algorithms associated with remote sensor 
covariates (terrain attributes and P-band of airborne radar) and RA approach to map par-
ticle size fractions in this region. 

The comparison of these approaches highlighted that the non-linear model intro-
duced significant improvements in the prediction of soil texture fractions and conse-
quently ML are potentially superior to linear methods of spatial prediction of soil texture 
[44]. Additionally [45], ML algorithms, in this case Support Vector Regression (SVR), pro-
duced the best prediction accuracy compared with the geostatistical interpolation tech-
niques. The results of this study, with best the prediction for the RF model, corroborate 
those of ref. [46], which also used radar data to estimate soil texture and obtained better 
results with RF than SVM. As already highlighted by refs. [8,47], the maximum silt values 
are relatively high when compared with the average contents found in Brazilian soils. 
According to ref. [8], in the Amazon region, silt greater than 400 g kg−1 are manly found 
in hydromorphic soils in the region of hydromorphic soils, which are not only found on 
lowlands but also in broad plateaus located in higher-altitude regions [7]. These regions 
have specific environmental characteristics (Figure 6) that allowed a good capture of pat-
terns by the environmental covariates, which resulted in good prediction results for this 
fraction. 

In general, both the correlation coefficients (Figure 4) and the most important covari-
ates used to predict and map soil particle size fractions by RF (Figure 5) coincide with the 
hypotheses raised in ref. [9], as well as with previous studies in the region [7,8,48]. 

Some of these covariates also appear as important predictors of soil particle size frac-
tions in ref. [49], where slope and TWI predictors had 80% of the importance for predicting 
surface clay (0 to 30 cm), and TWI and MRVBF were important covariates for silt predic-
tion. In Iran, ref. [2] found TWI as one of the most important covariates for clay prediction, 
and similarly TWI and MRVBF were important ones for silt prediction. 

The spatial patterns of the soil particle size fractions found in this study corroborate 
the results of ref. [8] carried out in the same study region. 

A few studies have investigated the potential of P-band in mapping soil properties, 
most of them focus on the soil moisture and soil dielectric variations [20,22]. It is even 
rarer to study the P-band in the soil mapping or vegetation in the Brazilian Amazon [50]; 
for the authors, P-band data can make a substantial contribution to the development of 
models in tropical rainforest regions, especially in those areas where it is difficult to obtain 
data from optical sensors. Although it is not possible to compare the results with other 
studies, as there has been no work conducted on the use of P-band to predict soil texture, 
our results showed that it has great potential to improve the predictions of clay, silt, and 
sand fractions at the surface and subsurface, and new studies with more soil data are re-
quired to formulate better conclusions. Besides, if the VV polarization of the P-band image 
were available, perhaps it would be possible to extract greater knowledge of the interac-
tion of the ratios and crosses of polarizations with granulometric fractions. For example, 
ref. [51], working with the X-Band, found that the sensitivity of soil texture is better ob-
served at higher-incidence angles than lower-incidence angles in both polarizations, i.e., 
HH- and VV-pol. Besides, changes in soil texture are also sensitive to polarization and it 
was observed that VV-pol is more sensitive than HH-pol for different soil texture field. 
On the other hand, ref. [52], also working with the X-Band, found that a strong change in 
specular scattering coefficient is observed by changing the sand percentage in soil for HH 
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polarization, while in the case of VV-polarization a lesser change is observed. It is difficult 
to observe the change in specular scattering coefficient with change in soil texture when 
the surface is considered as rough. Finally, the authors highlighted that it is important to 
minimize the roughness effect while observing the texture with specular scattering and 
that for higher-incidence angles (P50°), the distinction in soil texture fields are clearly ob-
servable on the basis of the copolarization ratio. 

The Amazon region has peculiar characteristics that demand an enormous logistical, 
financial, and personal effort to survey soils. It is not by chance that the major soil surveys 
date from the 70’s and 80’s [9] and they are exploratory or reconnaissance types. Despite 
all the limitations imposed by the condition of the region, this study showed that the RA 
approach can reduce logistical, financial, and personnel costs. In addition, the use of co-
variables such as P-band, which is able to surpass the tree canopy and suffers little or no 
interference from clouds, combined with covariate selection methods and the training of 
robust ML algorithms can greatly increase the prediction results, producing more detailed 
and very useful maps. 

5. Conclusions 
This work investigated the use of remote sensing covariates derived from airborne 

synthetic aperture interferometric radar images to predict soil surface and subsurface 
sand, silt, and clay contents in the Brazilian Central Amazon. A Reference Area sampling 
design was proposed to reduce costs and expedite soil survey was contrasted against a 
random sampling design (that is, Total Area sampling), and combined with three machine 
learning methods (RT, RF, and SVM) and two covariate selection approaches (WM and 
PCS). 

The RA approach was the best sampling option, deriving the least errors, for surface 
and subsurface silt and sand content prediction. Total Area random sampling was pre-
ferred for surface and subsurface clay content prediction, though the errors were similar 
to those from the RA approach. The RA was 80 km2, whereas the whole area to be mapped 
was 13.440 km2. This means that a tiny fraction of 0.6% of the total area served to collect 
soil and remotely sensed relief and P-band data to train soil particle size prediction meth-
ods, and transfer them to the whole area, composed by three relatively huge exploration 
blocks. Thus, the RA approach combined with remote sensing is recommended for expe-
diting soil mapping and saving costs, especially in large areas. 

From the relief attributes derived from the DEM, it was possible to establish relation-
ships between the soil particle size fractions and the landscape. The selection of covariates 
(PCS) obtained, in general, better results than the all-in WM option that is commonly em-
ployed in digital soil mapping studies. The most important covariates to predict the soil 
particle size fractions in the Central Amazon region were CI, LF, MRRTF, MRVBF, TWI, 
slope, and ProfC for all fractions, in addition to the radar P-band backscatter coefficient 
for surface sand and clay contents. 

Random forest outperformed RT and SVM for all soil particle size fractions and both 
layers. It is recommended for its robustness and ease to implement in free and open-
source software. The P-band backscatter coefficient was considered an important covari-
ate for the prediction of surface sand and clay contents by RF, showing its potential use 
for mapping these attributes. 
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