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Understanding the architecture of gene expression is fundamental to unravel the molecular
mechanisms regulating complex traits in bovine, such as intramuscular fat content (IMF)
and backfat thickness (BFT). These traits are economically important for the beef industry
since they affect carcass and meat quality. Our main goal was to identify gene expression
regulatory polymorphisms within genomic regions (QTL) associated with IMF and BFT in
Nellore cattle. For that, we used RNA-Seq data from 193 Nellore steers to perform SNP
calling analysis. Then, we combined the RNA-Seq SNP and a high-density SNP panel to
obtain a new dataset for further genome-wide association analysis (GWAS), totaling
534,928 SNPs. GWAS was performed using the Bayes B model. Twenty-one relevant
QTL were associated with our target traits. The expression quantitative trait loci (eQTL)
analysis was performed using Matrix eQTL with the complete SNP dataset and
12,991 genes, revealing a total of 71,033 cis and 36,497 trans-eQTL (FDR < 0.05).
Intersecting with QTL for IMF, we found 231 eQTL regulating the expression levels of
117 genes. Within those eQTL, three predicted deleterious SNPs were identified. We also
identified 109 eQTL associated with BFT and affecting the expression of 54 genes. This
study revealed genomic regions and regulatory SNPs associated with fat deposition in
Nellore cattle. We highlight the transcription factors FOXP4, FOXO3, ZSCAN2, and EBF4,
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involved in lipid metabolism-related pathways. These results helped us to improve our
knowledge about the genetic architecture behind important traits in cattle.

Keywords: backfat thickness, carcass andmeat quality, expression quantitative trait loci, intramuscular fat content,
RNA-Seq, SNP, Nellore cattle

INTRODUCTION

Over the last years, several studies have shown a growing interest in
understanding the molecular mechanisms regulating carcass and
meat quality traits in beef cattle (Cesar et al., 2014; Fernandes
Júnior et al., 2016; Silva-Vignato et al., 2017; Park et al., 2018; Raza
et al., 2020). Carcass and meat quality fat traits, such as backfat
thickness (BFT) and intramuscular fat content (IMF) are
economically important for the beef industry since they affect
the yield of cuts, dressing percentage, and the final consumer
perception of meat quality (Yokoo et al., 2008; Park et al., 2018).
BFT and IMF are traits related to the final amount of fat in the
carcass and play an important role in the determination of meat
palatability. The subcutaneous fat layer protects the carcass in the
cooling process, minimizing evaporative weight loss and avoiding
muscle fiber cold-shortening (Yokoo et al., 2008). The IMF
content, also known as marbling, affects beef juiciness,
tenderness, and palatability, relevant sensory characteristics for
the consumers (Troy et al., 2016; Park et al., 2018). Moreover, the
IMF is composed of higher levels of polyunsaturated fatty acid
(PUFA) and monounsaturated fatty acid (MUFA), which are
beneficial for human health (Troy et al., 2016).

Fat deposition in beef cattle depends on several intrinsic and
extrinsic factors, such as the stage of growth, physiological
maturity, nutrition, and genetics (Kauffman and Berg, 2011).
Researchers have already explored some of these factors showing
the differences in body composition among and within breeds
(Burrow et al., 2001; Yokoo et al., 2008; Lopes et al., 2012). In the
genetics field, genome-wide association studies (GWAS) have
been used to detect DNA variants and genomic regions
(quantitative trait loci, QTL) associated with carcass and meat
quality traits (Tizioto et al., 2013; Cesar et al., 2014; Fernandes
Júnior et al., 2016; Raza et al., 2020). Fernandes Júnior et al.
(2016), identified genomic regions and putative candidate genes
associated with ribeye area and BFT in Nellore cattle. Recently,
Martins et al. (2021) found genomic regions on chromosomes 1,
2, 5, 6, 7, 8, 10, 13, 14, and 26, which together explained 12.96%
of the total additive genetic variance of fatness (backfat and
rump fat thickness) in Nellore cattle. The authors reported
seven candidate genes involved in metabolic pathways related
to fatness and lipid metabolism (Martins et al., 2021). In previous
studies from our research group, Tizioto et al. (2013) found a
small effect QTL associated with meat and carcass quality traits
in Nellore cattle. Cesar et al. (2014) identified 23 moderate effect
QTL associated with fatty acids composition and small effect
QTL associated with intramuscular fat in Nellore cattle. Although
GWAS reveal genomic regions and putative candidate genes
associated with the phenotypes, such analysis provides limited
information on the molecular regulation of phenotypes (Michaelson
et al., 2009).

Understanding the architecture of gene expression is
fundamental to unraveling the molecular mechanisms
regulating complex traits (Spielman et al., 2007; Lee, 2018). In
previous studies from our lab, we have identified differentially
expressed genes in themuscle transcriptome of Nellore cattle with
extreme values for BFT and IMF, revealing metabolic pathways
and biological processes involved with these traits (Cesar et al.,
2015; Silva-Vignato et al., 2017). We also detected modules of co-
expressed genes correlated with BFT in Nellore cattle, underling
relevant pathways involved in bovine fat deposition (Silva-
Vignato et al., 2019). These studies helped us to gain insights
into how gene expression influenced these phenotypes. However,
there are still gaps in our knowledge about gene expression
regulation in cattle.

The expression quantitative trait loci (eQTL) mapping
effectively integrates genetic variations and gene expression at
the whole-genome level (Westra and Franke, 2014). eQTL data
provide substantial insights into transcriptional regulation,
functional interpretation for trait-associated SNP, and genetic
factors that regulate a specific disease or a complex phenotype
(Michaelson et al., 2009; Shabalin, 2012; Westra and Franke,
2014). Thus, our main goal was to identify gene expression
regulatory polymorphisms within genomic regions associated
with intramuscular fat and backfat thickness in Nellore cattle.
To achieve this goal, GWAS and eQTL analyses were performed
using an SNP dataset formed by transcribed variants mined from
RNA-Seq data combined with a high-density panel of SNP.

MATERIALS AND METHODS

Animals, Samples, and Phenotypes
The experimental procedures related to animal handling and care
were approved by the Institutional Animal Care and Use
Committee Guidelines from EMBRAPA (CEUA 01/2013).

A population of 193 Nellore steers, derived from an experimental
herd of the Brazilian Agricultural Research Corporation
(EMBRAPA), and originated from 34 unrelated bulls
representing the principal Brazilian Nellore genealogies, was used
in the current study. Between the years 2009 and 2011, the animals
were raised in grazing systems and finished in feedlots with the same
handling and nutritional conditions. The steers were slaughtered at
an average age of 25 months and 452 kg in a commercial
slaughterhouse located in Bariri (São Paulo, Brazil), following the
Brazilian Ministry of Agriculture, Livestock and Food Supply
(MAPA) regularization. More details are provided elsewhere
(Tizioto et al., 2013; Cesar et al., 2014).

For the RNA-Seq, a Longissimus thoracis (LT) muscle sample
of approximately 5 g was collected from the right side of each
carcass between the 12th and 13th ribs immediately after the
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animal’s death and stored in ultra-freezer at −80°C until the
analysis. For measurements of intramuscular fat content (IMF,
%) and backfat thickness (BFT, mm), a beef sample of the LT
muscle (12th–13th ribs, left side of the carcass) was collected 24 h
after slaughter. For IMF analysis, beef samples of approximately
100 g were lyophilized and ground, then IMF was achieved using
the AnkomXT20 extractor, following the AOCS protocol (AOCS,
2004), a more complete description can be found in Cesar et al.
(2014). The BFT was measured by using a graduated ruler, more
details in Tizioto et al. (2013).

High-Density Genotyping Data
The high-density genotyping data acquisition was already described
elsewhere (Cesar et al., 2014). Briefly, the genotyping analysis was
performed at the Bovine Functional Genomics Laboratory ARS/
United States and ESALQ Genomics Center (Piracicaba, São Paulo,
Brazil), using the BovineHD 770 k BeadChip (Infinium BeadChip,
Illumina, San Diego, CA, United States) following Illumina’s
protocol. As a quality control step, SNPs with call rate ≤ 95%,
minor allele frequency (MAF) ≤ 5%, located in sexual
chromosomes, and those not mapped in the Bos taurus ARS-
UCD1.2 reference genome were excluded from further analysis.

RNA-Sequencing
For total RNA extraction, a sample of 100 mg of the LT muscle
was processed using the Trizol reagent (Life Technologies,
Carlsbad, CA, United States), following the manufacturer’s
guidelines. After extraction, RNA integrity was verified using
the Bioanalyzer 2100 (Agilent, Santa Clara, CA, United States),
and the samples presenting RNA integrity numbers (RIN) greater
than 7 were considered for the next analyses. A total of 2 µg of
RNA from each sample was used for the cDNA library
preparation, according to the protocol described in the TruSeq
RNA Sample Preparation kit v2 guide (Illumina, San Diego, CA,
United States). The libraries were sequenced using the Illumina
HiSeq2500 ultra-high-throughput sequencing system with the
TruSeq SBS kit v3-HS (200 cycles), as described in Cesar et al.
(2015). All sequencing analyzes were performed at ESALQ
Genomics Center (Piracicaba, São Paulo, Brazil). After
sequencing, the SeqyClean package v. 1.4.13 (Zhbannikov
et al., 2017) was utilized to remove low-complexity reads and
the adapters sequences from the library preparation step. For the
quality control visualization, FastQC software v. 0.10.1 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used.

The read alignment against the bovine reference genome Bos
taurus ARS-UCD1.2 was carried out using STAR (Spliced
Transcripts Alignment to a Reference) (Dobin and Gingeras,
2015) v. 2.7 with Ensembl (release 96) gene annotation file. To
count the reads, we applied the HTSeq software (Anders et al.,
2015) v. 0.11.1 inside STAR. Only reads that were exclusively
mapped to known chromosomes were used in this study.

Read counts for each gene were normalized to CPM (Counts
per million) using the Bioconductor package edgeR (Robinson
et al., 2010), and then the CPM values were log2 transformed
(log2-CPM). Genes expressed at a low level or not expressed
(log2-CPM value < 0) and expressed in <50% of the samples, were
filtered out from the analysis. Additionally, concerning technical

biases affecting gene expression, a batch effect correction was
performed using the NOISeq R Package (Tarazona et al., 2015) v.
2.16.0. For that, a Principal Component Analysis (PCA) allowed
us to explore the dataset and detect possible batch effects. Then,
using the ARSyNseq function, we filtered out the noise associated
with the batch effect, a combination of flow cell and lane. The
datasets analyzed in this study can be found in the European
Nucleotide Archive (ENA) repository (EMBL-EBI) under the
accession codes: PRJEB13188, PRJEB10898, and PRJEB19421.

Variant Calling Analysis and SNPAnnotation
For the variant calling analysis in the muscle transcriptome, the
Genome Analysis Toolkit (GATK) v. 4.1.0.0 was used in the
Genomic Variant Call Format (GVCF) mode (Brouard et al.,
2019). Using this approach, all genotypes’ types were reported in
a final VCF file. The variants were called following the GATK Best
Practices, and the Ensembl Bos taurus dbSNP (release 96) was used
as known variants. The HaplotypeCaller algorithm was used to call
the variants individually, generating GVCF files for each sample.
These files were then merged using the CombineGVCF tool, and the
joint genotyping analysis was performed using the GenotypeGVCF.
In the end, a VCF file with all samples genotyped was achieved.
After the variant calling, we filtered the SNP for variant quality
score (QUAL) ≥ 30 and total depth of coverage (DP) > 10, using
BCFtools (Li, 2011) v. 1.9. Moreover, the SNP with call rate < 95%,
MAF < 5%, located in sexual chromosomes, and non-biallelic, were
removed from the SNP dataset. The variants’ annotation and
functional consequences were predicted using the Ensembl
Variant Effect Predictor (VEP) (McLaren et al., 2016) v. 95.2.

Genome-Wide Association Study
Previously to the association study, the filtered SNPs from the
RNA-Seq variant calling and the Bovine HD BeadChip were
combined into one complete dataset. BEDTools (Quinlan and
Hall, 2010) v. 2.27.1 was used to check for common variants
(located in the same genome position) in the two datasets. Then,
the transcribed variants located in the same spot as those from the
Bovine HD BeadChip were removed from the analysis. Thus, a
complete dataset containing all SNPs (unique variants) was used
for the following analysis.

The GWAS was performed using the GenSel software (Garrick
and Fernando, 2013) with a Bayesian approach. First, a Bayes C
model was used to estimate the prior genetic and residual
variances for each trait with a calculated π (0.9997). Then,
these values were used as priors to run a Bayes B model, as
previously described in (Cesar et al., 2014; Moreira et al., 2018).
The mathematical model was

y � Xb + ∑
k

j�1
ajβjδj + e,

where y was the vector of phenotypic values, X represented the
incidence matrix for fixed effects, b was the vector of fixed effects,
K was the number of SNP variants (534,928), aj was the column
vector representing the SNP covariate at locus j, assumed to be
normally distributed N (0, σ2β) when δj = 1, but βj = 0 when δj = 0,
with δj being a random variable 0/1, indicating the absence
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(probability π) or presence (probability 1-π) of locus j in the
model, and e represented the vector of residuals associated with
the analysis. In the model, the contemporary group (animals from
the same farm, year, and slaughter date) was set as a fixed effect
and hot carcass weight as a covariate.

The GenSel program uses Markov-Chain Monte Carlo
(MCMC) to estimate the effect of each SNP among all SNPs
in each interaction. In this procedure, 41,000 interactions, with
the first 1,000 interactions being discarded, were accumulated
to obtain the posterior mean effect for each SNP. A map file
was used to position the SNPs into 2,502 non-overlapping
1 Mb SNP windows. Manhattan plots containing the variance
explained by each SNP window along the autosomal
chromosomes were constructed for each trait. Based on an
infinitesimal model (Onteru et al., 2013; Van Goor et al., 2016),
it is expected that each window explains 0.04% (100%/2,502) of
the genetic variance, thus, windows explaining five times more
than the expected (0.20%) were considered as relevant QTL
regions.

The Cattle QTL database (Hu et al., 2019) (Cattle QTLdb,
release 41) was used to search for known QTL that could be
overlapping our relevant QTL regions. For that, we used an in-
house R script and the BED file with QTL coordinates according
to the Bos taurus ARS-UCD1.2 genome, available on Cattle
QTLdb. We also checked for previously detected QTL
reported by our research group for the interest traits (Tizioto
et al., 2013; Cesar et al., 2014). Before this, the LiftOver tool from
UCSC Genome Browser (Casper et al., 2018) was used to convert
the genome coordinates from the Bos taurus UMD3.1 for the
current version ARS-UCD1.2. Finally, the genes within the
relevant QTL were annotated using the Ensembl Biomart
(Ensembl Genes 100).

Expression Quantitative Trait Loci
Identification and Functional Annotation
The R package Matrix eQTL (Shabalin, 2012) v. 2.3 was used to
perform cis and trans-eQTL identification, using the complete
dataset of SNP and genes with expression values in log2-CPM.
The contemporary group was considered in the model for
confounding effect correction. According to previous work from
our group (Mudadu et al., 2016), no evidence of population
stratification was verified in this Nellore population. In the
present study, cis-eQTL were defined as SNP located no more
than 1Mb upstream or downstream from the regulated gene,
and trans-eQTL as the SNP located more than 1Mb from the
regulated gene. Matrix eQTL tests for associations between SNP
genotypes and gene expression using linear regression to associate
each gene-SNP pair, considering additive genotype effects. The
program also calculates the false discovery rate (FDR), based on
Benjamini–Hochberg methodology (Benjamini and Hochberg,
1995), separately for cis and trans-eQTL (Shabalin, 2012). The
lists of cis and trans-eQTL (FDR < 0.05) were annotated
separately, by using VEP (McLaren et al., 2016) v. 95.2. At last,
to verify if the eQTL can be affecting transcription factor (TF), we
compared our results with the manually curated list of bovine TFs
published by our research group (de Souza et al., 2018).

Overlap Between Relevant Quantitative
Trait Loci and the Expression Quantitative
Trait Loci
To verify if the SNPs within relevant QTL regions were also
affecting the gene expression, an overlap analysis using those
SNPs and the list of cis and trans-eQTL (FDR < 0.05) were
performed utilizing the GNU/LINUX environment. Considering
all the eQTL (cis and trans) within QTL regions, we used PLINK
(Purcell et al., 2007) v. 1.9 to perform linkage disequilibrium (LD)
pruning. The parameters applied to variant pruning were
pairwise linkage with a minimum r2 of 0.5 and window size of
100 SNPs, shifting 10 SNPs at each step. Then, carrying out the
most representative eQTL (tag-SNP) and the genes regulated by
them, we used Cytoscape software (Shannon et al., 2003) to build
SNP-gene regulation networks for each trait. Finally, to find the
molecular pathways in which the genes regulated and containing
the representative eQTL were involved, we used MetaCore
software (https://portal.genego.com/) from Clarivate (London,
GBR) with the Mus musculus database.

RESULTS

Phenotypes, High-Density SNP Data, and
RNA-Seq Data
In the current study, the Nellore steer population presented mean
phenotypic values of 2.93% for IMF and 6.86mm for BFT, with
genomic heritability of 0.25 and 0.18 for IMF and BFT, respectively.
From the high-density genotyping SNP data, we obtained a total of
414,879 SNPs that passed all the quality control filters (MAF ≥ 5%;
call rate≥ 95%; not in sex chromosomes; andmapped to the reference
genome). Concerning the RNA-Seq data, an average of 18.45million
reads per animal were used as input for mapping to the Bos taurus
ARS-UCD1.2 genome. In this analysis, 85.71% of the reads were
uniquely mapped to the reference genome. Supplementary Table S1
shows all the mapping reads statistics. Read counts were normalized
to counts per million (CPM) and log2 transformed. Filtering steps
were applied to remove low-level or not expressed genes and a batch
effect correctionwas performed tominimize technical biases affecting
gene expression, totaling 12,991 genes with log2-CPM expression
values used in the eQTL identification.

RNA-Seq Variant Calling Analysis Revealed
120,049 Unique Variants.
The GATK variant calling analysis allowed us to identify
123,300 SNPs that passed all the quality control filters
(MAF >5%; call rate > 95%; not in sex chromosomes; and
biallelic). There were 3,251 SNPs that overlapped the SNP panel
used for genotype (Illumina HD BeadChip). These were used to
validate our SNP discovery and revealed 95.85% concordance
between genotypes. Variants in the same position as the high-
density SNP panel were removed for the next analysis due to
their high genotype similarity, and we proceeded with
120,049 unique variants.

Functional annotation analysis of the 120,049 SNPs revealed
9,018 novel variants. Supplementary Figure S1 shows the variant
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distribution across the 29 Bos taurus autosomal chromosomes (BTA)
and the most severe consequences predicted by VEP. Most SNPs
were in 3′UTR regions (23.24%), followed by downstream genes
(18.82%) and intron variants (12.67%). Besides these, 25.28% were
synonymous variants, while 9.81% were classified as missense
mutations. The SIFT score predicted 2.85% of deleterious SNPs. A
complete overview of the results obtained in the annotation analysis
can be seen in Supplementary Table S2.

Twenty-One Relevant Quantitative Trait
Loci Associated With Intramuscular Fat and
Backfat Thickness
The Illumina bovine HD SNP panels were designed to cover the
entire genomes with equally spaced polymorphic SNPs across
different breeds. In the current study, 414,879 SNPs from the Bos
taurus genome passed all the quality control filters. To empower the

SNP database with coding and regulatory variants, we combined the
Illumina panel with transcribed variants obtained from theRNA-Seq
calling analysis (120,049 SNPs). As a result, for the GWAS, a total of
534,928 SNPs were associated with the phenotypes. Figure 1 shows
the Manhattan plots of the proportion of genetic variance explained
by the 1Mb SNP windows for each trait (a complete overview of the
SNP windows can be seen in Supplementary Table S3).

Starting with IMF, we found eleven relevant QTL windows
positioned on BTA1, 3, 7, 10, 13, 19, 20, 21, and 23 (Table 1). The
QTL that explained the highest proportion of the genetic variance
of the phenotype (Vg) for IMF (0.84%) was located on BTA23 at
15 Mb. Supplementary Table S4 presents the individual SNP
effects within each of the relevant windows. Additionally, using
the Ensembl Genes database, we annotated the 155 genes within
the relevant QTL associated with IMF (Supplementary Table
S5). Then, we consulted the Cattle QTLdb to identify relevant
QTL overlapping with known cattle QTL. Our relevant QTL

FIGURE 1 | Manhattan plot of the posterior means of the percentage of genetic variance explained by each 1 Mb SNP window across the 29 autosomal
chromosomes for intramuscular fat content (IMF) (A) and backfat thickness (BFT) (B). The X-axis represents the chromosomes, and the Y-axis, the percentage of genetic
variance explained by each SNP window. Red dashed lines delimit the relevant QTL regions.
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regions were previously associated with carcass and meat quality
traits, such as marbling score, fatty acid composition, shear force,
and body weight gain in taurine and zebuine breeds
(Supplementary Table S6).

For BFT, we found 10 relevant QTL (Table 1) with 106 genes
annotated on these regions (Supplementary Table S5). The QTL
that explained the highest proportion of Vg were located on
BTA9 at 4 Mb and BTA1 at 63 Mb (0.45% of Vg each).
Supplementary Table S7 reports the individual SNP effects
within the relevant QTL associated with BFT. Comparing our
SNP windows with known bovine QTL (QTLdb) revealed
genomic regions associated with body composition and carcass
quality traits, like body weight, subcutaneous fat, and shear force
in taurine and zebuine cattle breeds (Supplementary Table S6).
Moreover, looking for our group’s previously identified QTL, we
found two IMF QTL (BTA1_75 and BTA20_62) and three BFT
QTL (BTA1_63, BTA7_3, and BTA7_96) encompassing genomic
regions associated before with ribeye area, BFT, and fatty acids
content (Eicosadienoic acid and Docosahexaenoic acid) in this
Nellore population (Tizioto et al., 2013; Cesar et al., 2014).

Most Cis and Trans-Expression
Quantitative Trait Loci Were in Transcribed
Regions
We identified 71,033 cis-eQTL and 36,497 trans-eQTL (FDR <
0.05) distributed along the genome, with 5,718 SNPs acting both
as cis and trans-eQTL. Figure 2 illustrates the eQTL distribution
and gene positions (Mb) along the 29 BTAs. Regarding gene
regulation, 4,871 genes had their expression affected by cis-eQTL,
and among them, 128 were in the curate list of bovine TFs (de

Souza et al., 2018). Moreover, 6,370 genes were affected by trans-
eQTL, and within them, 259 were TFs. From the total of genes,
2,560 were affected by both cis and trans-eQTL. Supplementary
Table S8 displays the complete list of cis and trans-eQTL (FDR <
0.05) and the genes regulated by them, highlighting the TFs.

VEP analysis showed that most of the cis and trans-eQTL were
located on BTA19 and BTA23, respectively, while BTA20 had
fewer local and distant variants (Supplementary Figure S2).
Moreover, most eQTL were variants called from the RNA-Seq
data (approximately 92% of the cis and 70% of the trans-eQTL),
so the functional annotation results are similar to those presented
for the complete dataset of transcript SNPs. Both cis and trans-
eQTL were predominantly located in 3’UTR, intronic, and
downstream gene regions. Among them, 23.86% and 22.25%
were predicted to be synonymous variants, whereas 9.62% and
8.70% were classified as missense for the cis and trans-eQTL,
respectively (Supplementary Figure S3).

Regulatory Polymorphisms Associated
With Intramuscular Fat and Backfat
Thickness
To identify eQTL that could be associated with our phenotypes,
we overlapped the eQTL and GWAS results. Our analysis
revealed that 231 and 109 eQTL variants were located on
relevant QTL associated with IMF and BFT, respectively.
Within the 231 eQTL associated with IMF (relevant QTL
windows described in Table 1), 156 were cis, 26 trans, and
49 cis and trans variants. These regulatory polymorphisms
affected the expression of 117 genes, including seven TFs:
ARNT, FOXO3, FOXP4, NFYA, ZFP2, ZNF354C, and

TABLE 1 | Characterization of the relevant QTL regions associated with intramuscular fat content (IMF) and backfat thickness (BFT) in a Nellore cattle population.

Traits Chr_Mb First—last position Proportion Vg
(%)

N SNP/window N Genes/window

IMF 23_15 15000692–15992208 0.84 185 27
7_2 2003622–2999865 0.51 941 26

21_22 22001027–22990406 0.38 223 18
7_81 81002985–81999643 0.35 284 7
1_75 75000671–75968766 0.33 257 3
20_62 62002061–62998209 0.30 303 11
1_67 67000099–67991943 0.28 251 12
13_13 13000910–13992863 0.23 208 2
19_54 54022589–54994606 0.22 309 12
3_108 108002916–108996760 0.22 258 16
10_37 37022308–37997882 0.21 427 21

BFT 9_4 4040113–4999917 0.45 196 2
1_63 63008675–63998464 0.45 201 4
9_46 46000672–46993133 0.26 184 2
5_104 104002715–104990551 0.24 302 8
17_18 18002778–18997485 0.24 335 13
9_55 55005021–55998978 0.24 144 3
7_3 3000052–3998084 0.23 351 24

13_52 52001168–52998893 0.22 212 32
7_96 96002065–96995101 0.21 523 9
21_23 23014366–23998400 0.21 224 9

Chr_Mb = map position (chromosome and position in Mb) based on the Bos taurus ARS-UCD1.2; Proportion Vg (%) = Proportion of genetic variance explained by 1 Mb SNP, window;
N SNP/ window = number of SNP within the genomic region; N Genes/ window = number of genes annotated within the (Ensembl Genes 100) SNP window.
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ZSCAN2. Besides that, 12 eQTL were missense mutations
(Supplementary Table S2), spanning the QTL regions located
on BTA1, 3, 7, 10, 19, and 21. Among them, the cis-eQTL
rs381713284 (BTA21 at 22 Mb, SIFT = 0.05), the trans-eQTL
rs379524684 (BTA3 at 108 Mb, SIFT = 0.03), and the trans-eQTL
rs110129172 (BTA10 at 37 Mb, SIFT = 0.02) were deleterious
SNP. The SNP rs382320484 (BTA10 at 37 Mb), upstream of the
TMEM87A and GANC genes, affected the expression of the
largest number of genes (12 genes in trans and two genes in
cis); followed by the novel SNP 21:22425675 (chromosome:
position), a synonymous variant located on the ZNF592 gene,
that affected the expression of nine genes (seven genes in trans
and two genes in cis), being two TFs (FOXO3 and ARNT).
Moreover, within the genes regulated by eQTL associated with
IMF, the two genes regulated by the larger number of eQTL were
the pseudogene ENSBTAG00000052719 (BTA7) by 21 cis-eQTL,
and the TMEM87A (BTA10) by 13 cis-eQTL. In Figure 3, we
presented the SNP-gene regulation networks for the eQTL
associated with IMF, focusing on the eQTL affecting TFs and
their direct connections.

Associated with BFT, there were 74 cis, 20 trans, and 15 both
cis and trans-eQTL. These variants were located on the SNP
windows BTA9_46, BTA5_104, BTA17_18, BTA7_3, BTA13_52,
BTA7_96, and BTA21_23 (see Table 1). Together, the 109 eQTL
affected the expression levels of 54 genes, among them two TFs,
the EBF4 and ZSCAN2. The genes regulated by the larger number
of eQTL were NDUFC1 (BTA17), which is affected by nine eQTL
(cis and trans), and the novel gene ENSBTAG00000025383
(BTA12), which is affected by eight eQTL (cis and trans).
Figure 4 illustrates the SNP-gene regulation networks for the
eQTL associated with BFT, focusing on the eQTL affecting TFs
and their direct connections. As occurred for IMF, we found
12 missense variants within our relevant eQTL. These variants
were located on BTA5, 7, 13, 17, and 21 and all of them were

classified as tolerated by VEP (without deleterious effects). The
complete list of the eQTL spanning IMF and BFT relevant QTL,
their regulated genes, and beta-values (effect size and direction)
are presented in Supplementary Table S9.

At last, to investigate if the genes regulated and containing
eQTL associated with the interest traits were involved in lipid
metabolism-related pathways, we did an enrichment analysis of
these genes (135 and 74 genes for IMF and BFT, respectively).
This analysis revealed some interesting pathways, such as signal
transduction, cell cycle, development, and transport, underlining
the AKT andWNT signaling. Figure 5 shows the top ten Pathway
Maps [−log (p-value)] enriched for the genes related to IMF
and BFT.

DISCUSSION

In the present study, we used an SNP dataset constituted by RNA-
Seq variants and a high-density genotyping panel to perform an
integrative analysis between GWAS and eQTL. The idea was to
find gene expression regulatory polymorphisms associated with
intramuscular fat and backfat thickness in bovine. Backfat
thickness and intramuscular fat deposition are of economic
importance to the beef cattle industry. The BFT is the best
predictor of overall fatness in the animal’s body, impacting
carcass cutability and meat yield (Yokoo et al., 2008; Lopes
et al., 2012). The IMF is positively correlated with beef
tenderness, a meat quality trait that strongly affects consumer
satisfaction and repurchase decision (Park et al., 2018). Moreover,
the beef fatty acids composition is associated with human health
(Troy et al., 2016). Herein, the mean phenotypic values of IMF
and BFT were higher than those presented in the literature for
Nellore cattle, with mean values ranging from 2 to 5 mm for BFT,
and around 1% for IMF (Yokoo et al., 2010; Borges et al., 2014;

FIGURE 2 | Scatter plot of the affected genes and eQTL (FDR < 0.05). The Y-axis represents gene order in relation to chromosome position in the Bos taurus
genome, and X-axis represents the SNP order in relation to chromosome position in the Bos taurus genome. Points scattered diagonally indicates cis-eQTL. Points
scattered vertically indicate trans-eQTL. The vertical blue lines denote individual autosomal chromosomes.
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Fernandes Júnior et al., 2016). Nevertheless, selection for these
traits can be difficult as they are expressed later in the animal’s
life. In this way, identifying genes and genetic markers with
causative effects over these traits will help improve breeding
progress in bovine (Fernandes Júnior et al., 2016).

GWAS has been widely used to identify genetic variants and
putative candidate genes associated with complex phenotypes
(Cesar et al., 2014; Fernandes Júnior et al., 2016; Raza et al., 2020;
Martins et al., 2021). However, panels used for GWAS studies are
not designed to have causative SNP since the goal is to have
informative markers across the genome (Tam et al., 2019). In the
current study, we used RNA-Seq-based SNP to empower the
high-density genotyping panel. According to Suárez-Vega et al.
(2015), calling variants from RNA-Seq raises the chances of
discovering causative mutations harboring or neighboring QTL
and can provide a better understanding of the regulatory
mechanisms underlying eQTL.

With the incorporation of RNA-Seq-based SNP, we were able
to identify QTL associated with IMF and BFT that better

explained the genetic variance of the phenotype compared
with previous works (Tizioto et al., 2013; Cesar et al., 2014),
even using a minor subset of the population (193 animals that
have RNA-Seq information). Tizioto et al. (2013), using only the
high-density SNP panel (Bovine HD 770 k) and 536 animals from
the same population, found that the highest effect QTL for BFT
was located on BTA11 and only explained 0.36% of Vg, with
genomic heritabily (h2) of 0.21. Here, the two QTL with the
highest effect for BFT were detected on BTA9 and BTA1, and
each explained 0.45% of Vg, with a slightly smaller h2 of 0.18. In
another study using the same population (Cesar et al., 2014) with
386 Nellore steers with phenotypes for IMF and the HD
770 k chip, the highest effect QTL for IMF (located on
BTA10) explained 0.66% of Vg (h2 = 0.25), while in this
study, the highest effect QTL was detected on BTA23 and it
explained 0.84% of Vg (h2 = 0.25).

Complementary to the GWAS analysis, we identified
71,033 cis-eQTL and 36,497 trans-eQTL in this Nellore
population, most of them from the RNA-Seq dataset, showing

FIGURE 3 | SNP-gene regulation networks representing the eQTL variants located within QTL windows associated with intramuscular fat content (IMF) and the
genes regulated by them, focusing on the variants regulating transcription factors (TFs) and their direct connections. The colors are coded by QTL window: (A)
BTA21_22, eQTL represented in orange; (B) BTA23_15, eQTL represented in lightgreen; (C) BTA7_2, eQTL represented in pink. All the formats are described in the
legend. New variants are represented by chromosome: position. Gray lines represent a positive beta-value and red ones represent a negative beta-value.
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the importance of adding transcribed variant calling information
on eQTL mapping, as stated by Suárez-Vega et al. (2015). Most of
the SNPs were in 3′UTR, introns, and downstream gene regions,
but some were missense variants (about 9%). It is important to
keep in mind that the polymorphisms identified in this study may
not be the causative mutation but could be in linkage
disequilibrium with the causative one (Mueller, 2004), thus
explaining how a missense SNP could be associated with gene
expression variation.

There are several advantages in integrating GWAS and eQTL
data. Expression quantitative trait loci are essential for
understanding the genetic basis of cellular processes and
complex traits (Lee, 2018). Moreover, eQTL are essential for
the functional interpretation of trait-associated polymorphisms
and identification of genes with expression levels associated with
complex phenotypes (Westra and Franke, 2014; Littlejohn et al.,
2016; Cai et al., 2019). In the current work, we focused on the
overlap between the eQTL and relevant QTL regions for each

FIGURE 4 | SNP-gene regulation networks representing the eQTL variants located within QTL windows associated with backfat thickness (BFT) and the genes
regulated by them, focusing on the variants regulating transcription factors (TFs) and their direct connections. The colors are coded by QTL window: (A) BTA21_23,
eQTL represented in blue; (B) BTA13_52, eQTL represented in green. All the formats are described in the legend. Gray lines represent a positive beta-value and red ones
represent a negative beta-value.
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trait, concentrating on the mutations affecting the expression of
transcription factors.

Intramuscular Fat Content
Seven TFs were regulated by eQTL harbored on QTL regions
associated with IMF. Transcription factors are cellular
components that exert an essential role in regulating gene
expression (Vaquerizas et al., 2009). Studying how these
components are regulated is attractive to a more in-depth
investigation of gene expression patterns during development
and terminally differentiated cells (Calkhoven and Ab, 1996).

Thus, we first highlight here the FOXP4 TF, positively regulated
by a cis-eQTL (rs449704044) located downstream of the novel
gene ENSBTAG00000054479, and harbored on the most relevant
QTL for IMF (BTA23 at 15 Mb), that explained 0.84% of Vg. The
Forkhead box (Fox) family genes are expressed in various tissues,
acting both in developmental processes as in tissue maintenance
during adult life (Golson and Kaestner, 2016; Zhu, 2016). The
same cis-eQTL (rs449704044) negatively affected the expression
levels of the C23H6orf132 gene (Figure 3B). Although there is a
lack of information about the C23H6orf132 gene function in
cattle, according to the GeneCards human database (Stelzer et al.,
2016), Fox TFs were predicted to bind TFBS (transcription factor-
binding sites) of this gene. The C23H6orf132 was also regulated
by the rs383735612 cis-eQTL, located in the 3’UTR region of the
TAF8 gene. The TAF8 is an important modulator of early
adipogenesis. Because of its histone fold domain, TAF8 can
inhibit adipogenesis by specifically downregulating the
expression of the peroxisome proliferator-activated receptor γ
(PPARγ) and the CCAAT enhancer-binding protein α (C/EBPα),
major promoters of adipogenesis (Guermah et al., 2003; Lefterova
et al., 2014). Wang et al. (2013) found TAF8 as a target gene of a
miRNA highly expressed in subcutaneous fat of beef cattle, and
further, enriched for the “regulation of fat cell differentiation”
biological process, corroborating its relevance in controlling fat
deposition in bovine. Another TF affected by an eQTL located on
BTA23 was NFYA (see Figure 3B), also known as CCAAT-box
Binding Protein A (CBP-A). This TF plays a role in the early
development of adipocytes, as well as, is essential for leptin gene
expression (Lu et al., 2015). The knockout of this gene in mice
resulted in lipodystrophy with a progressive loss of adipose tissue
(Lu et al., 2015).

We also emphasize another member of the Forkhead box
family, the FOXO3. This TF is negatively regulated in trans by a
synonymous novel SNP (21:22425675) located on the exonic
region of ZNF592 gene. This SNP also regulates six more genes in
trans and two genes in cis (Figure 3A). In the skeletal muscle,
FoxO genes, including FOXO3, are responsible for switching
carbohydrate to lipid as an energy source during starvation
periods and can interact with the PPARγ (Gross et al., 2008).
In previous work, Cesar et al. (2016), identified FOXO1 and
FOXO3 as upstream regulators of gene expression in the skeletal
muscle of Nellore cattle influenced by a variation in oleic acid
content. Gui and Jia (2018) found a polymorphism in the 3’UTR
region of FOXO1 associated with IMF in Qinchuan cattle. The
authors hypothesized that the variant could affect FOXO1
expression levels through miRNA activity, thus modulating
changes in fatty acid metabolism. This hypothesis corroborates
our findings of a regulatory SNP affecting the expression levels of
a FoxO gene associated with IMF in beef cattle.

From the list of nine genes regulated by the aforementioned
novel SNP 21:22425675 (Figure 3A), there is one more TF, the
ARNT, and some noteworthy genes, such as the CRTC3, IQGAP1,
and SSH1. The ARNT, negatively regulated in trans, is a nuclear
translocator that binds the aryl-hydrocarbon receptor (AhR). This
binding forms a heterodimer that attaches to Xenobiotic/Dioxin
response element sequences (XRE/DRE) of different target genes,
activating mRNA transcription (Ishihara et al., 2018). Conversely,

FIGURE 5 | Top 10 pathway maps enriched for the genes regulated and
containing the eQTL encompassing relevant QTL regions associated with
intramuscular fat content (IMF) (A) and backfat thickness (BFT) (B) in a Nellore
cattle population.
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the CRTC3 and the IQGAP1 were regulated in cis by this eQTL.
The first one, CRTC3 is part of the cAMP responsive element-
binding protein (CREB)-regulated transcription coactivator
(CRTC) family and plays an important role in lipid and glucose
metabolism (Liu et al., 2020; Liu et al., 2021). Studying IMF
deposition, Liu et al. (2020) overexpressed CRTC3 in porcine
IMF adipocytes and observed a faster accumulation of lipid
droplets in cells together with an upregulation of important fat
metabolism genes, such as perilipin, PPARγ, C/EBPα, leptin, and
FABP4 (Fatty acid-binding protein 4). In a more recent work, Liu
et al. (2021), demonstrated that the overexpression of CRTC3
changes the metabolic profile in intramuscular adipocytes, and
also promotes adipogenic differentiation of intramuscular and
subcutaneous adipocytes through the calcium signaling pathway.
We also highlight that in the same genomic region (BTA21,
22Mb), we found two other eQTL (rs379449619 and
rs525656948) located on the CRTC3 gene associated with IMF
in our population, emphasizing its relevance for IMF molecular
regulation. As for IQGAP1, this gene encodes a ubiquitously
expressed scaffolding protein implicated in several cellular
processes, including mitogen-activated protein kinase and AKT
signaling cascades (Erickson and Anakk, 2018; Hedman et al.,
2021). Studies investigating the loss of this protein in mice
demonstrated a reduced PPARγ activity, as well as, a defective
transcription of gluconeogenesis and fatty acid synthesis genes
(Erickson andAnakk, 2018; Hedman et al., 2021). Finally, the SSH1
gene, known by its function in cytoskeleton organization and cell
migration, was previously found associated with body fat in
humans (Gomez-Santos et al., 2011). In earlier work from our
group, studying the proteomic profile of high and low IMF Nellore
cattle, we found SSH1 protein downregulated in the group with
higher values of IMF, suggesting its involvement in the cellular
rearrangement needed for adipocyte growth (Poleti et al., 2018).

Still focusing on the genomic window of BTA21, we emphasize
the zinc-finger gene ZSCAN2, a TF negatively affected in cis by a
deleterious SNP (rs381713284). Deleterious mutations can be
defined as genetic alterations that raise individual susceptibility or
predisposition to diseases/disorders. These variations often occur
in coding regions and are typically missense, causing changes in
the amino acid sequence, and consequently, in the protein
(Plekhanova et al., 2018). According to van Strien (2018), it is
coherent that variants causing changes in the protein product
(missense) also can affect the expression levels of the gene coding
for the protein (cis-effects) or on other genes (trans-effects). Here
the rs381713284 (located on theWDR73 gene), which changes an
Arginine for a Cysteine in the protein sequence, was the only
missense eQTL presenting cis-effects. Leal-Gutiérrez et al. (2020)
found that a higher expression level ofWDR73 is associated with
a lower meat quality index (lower marbling score, higher
connective tissue content, tougher and dryer meat) in Angus-
Brahman steers. Although missense mutations on the WDR73
gene were already reported in humans associated with neuro
disorders (Jiang et al., 2017), as far as we know, in cattle, there
were no previous reports of deleterious SNPs on this gene
associated with IMF.

Other TF identified herein affected by eQTL associated with
IMF (Figure 3C) were the ZFP2 and the ZNF354C, both members

of the zinc-finger family. Together, ZFP2 and ZNF354C were
affected by 10 cis-eQTL located on BTA7 at 2 Mb, the second
most relevant QTL for IMF, explaining 0.51% of Vg. Zinc-finger
proteins are a large family of TFs characterized by a zinc-finger
domain in their structure. They are ubiquitously expressed in
eukaryotic genomes, participating in growth regulation, cell
development, immunity, and signal transduction pathways.
During adipogenesis, zinc-finger TFs are key molecules in
preadipocytes differentiation and adipocyte determination.
Moreover, zinc-finger TFs can both activate and inhibit the
PPARγ and C/EBPs (Wei et al., 2013; Cassandri et al., 2017).
Most of the eQTL affecting these two zinc-finger gene expression
levels were located in novel genes, except for two of them
(rs208107772 and rs462263309) located on the exonic region
of ADAMTS2. The A Disintegrin and Metalloproteinase with
Thrombospondin motifs (ADAMTS) family exerts a principal
role in the extracellular matrix (ECM) maintenance and
remodeling, mainly by participating in collagen biosynthesis
(Kelwick et al., 2015). Lee et al. (2010) found the ADAMTS4
overexpressed in the Longissimus dorsi muscle of Korean cattle
presenting high IMF. Cao et al. (2017) identified the ADAMTS2
gene as differentially methylated and differentially expressed
when comparing two sheep breeds known by their different
carcass weight and meat yield, confirming that this gene may
indirectly affect marbling through collagen synthesis.

Finally, the enrichment analysis of the genes regulated and
containing eQTL associated with IMF revealed that those genes
were involved in signal transduction, cell cycle, and development
pathways, like the AKT signaling (Figure 5A). The AKT or PI3K-
AKT signaling is an intracellular pathway essential for signal
transduction, cell proliferation, apoptosis, and metabolism (Yun
et al., 2020). Furthermore, AKT plays a crucial role in adipocyte
differentiation. AKT can drive fat production and promote
adipogenesis through phosphorylation of substrates, such as
Fox family members (Kim et al., 2010; Wang et al., 2020; Yun
et al., 2020). Corroborating these findings, in the current study,
the FOXO3 TF, negatively regulated by the 21:22425675 eQTL,
was enriched for the Signal transduction AKT signaling. Besides
that, although not enriched in this pathway, the IQGAP1 gene,
affected by the same eQTL plays a role in AKT signaling cascades.
Li et al. (2017), studying transcriptional differences in pigs in high
and low BFT groups, found the PI3K-AKT signaling pathway
enriched for differentially expressed liver miRNAs in these
animals. Liang et al. (2017), also found the PI3K-AKT
pathway related to lipid metabolism and milk fat formation in
Holstein cows. These findings indicate that the genes being
regulated/containing eQTL associated with IMF participate in
relevant lipid-metabolism pathways.

Backfat Thickness
Regarding the eQTL harbored on relevant QTL associated with
BFT, most of them were cis-eQTL. Among the affected genes,
EBF4 and ZSCAN2 are part of the list of bovine curated TFs (de
Souza et al., 2018). The first one, EBF4, is positively regulated by a
single cis-eQTL (rs378953520) harbored on the PCED1A gene
(Figure 4B), and located on the QTL region of BTA13 at 52 Mb
(0.22% Vg). This gene is a helix-loop-helix TF, member of the
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early B cell factor (Ebf) gene family, that in vertebrates is
composed of four members, EBF1 to 4. The EBF1 and 2
participate in the adipogenesis process by playing critical roles
during the transcriptional adipogenic cascade (Akerblad et al.,
2002; Jimenez et al., 2007). Recently, Cao et al. (2021), in a
genome-wide DNA methylation study associated with body fat
traits in healthy adult humans, identified a differential methylated
position associated with body mass index in the 3’UTR region of
the EBF4 gene, suggesting that this gene could be a target for
future obesity risk research. About the gene harboring this
mutation, the PCED1A is an esterase part of the GDSL/SGNH
superfamily, and is expressed in multiple tissues (Maynard et al.,
2018). Despite limited studies about the specific functions of this
gene, Maynard et al. (2018) indicated a potential structural
function at the cell membrane and/or the ECM. As already
mentioned, structural genes may exert a function in the
cellular rearrangement during adipocyte expansion.

Concerning ZSCAN2, this TF is negatively regulated by a cis-
eQTL (rs476932264) in the FSD2 gene (Figure 4A), located on
BTA21 at 23Mb, a region that explained 0.21% of Vg in GWAS
analysis. Interestingly, ZSCAN2 expression levels were also
negatively regulated by a missense cis-eQTL associated with IMF
(Figure 3A). This gene belongs to the zinc-finger family of TFs,
exerting a role during adipocytes differentiation and determination,
and may promote and inhibit PPARγ and C/EBPs expression (Wei
et al., 2013; Cassandri et al., 2017). Regarding FSD2, this gene not
only harbors the rs476932264 cis-eQTL, but also the
rs109974605 and rs379905460 (Figure 4A). The rs476932264 and
rs109974605 are part of the five cis-eQTL affecting their own gene
expression levels. While, rs379905460 is a trans-eQTL affecting the
expression of both LOC522763, a cattle novel gene, and HAPLN3, a
hyaluronan and proteoglycan-binding link protein gene involved in
integrity maintenance and binding functions of the ECM (Spicer
et al., 2003). In previous work from our group, a SNP in the FSD2
gene was already associated with meat color in this Nellore cattle
population (Tizioto et al., 2013). Moreover, Lim et al. (2016),
indicated it as a potential determinant of overall meat quality in
pigs. The authors tested the association of haplotypes produced by
FSD2 SNP and meat quality traits in Berkshire pigs, showing
significant associations of the haplotypes with moisture, crude
protein levels, color, and IMF content.

We also highlight here the genes ENSBTAG00000025383 and
NDUFC1. These two genes were affected by 8 and 9 eQTL
associated with BFT, respectively, being the most regulated
ones. Although there is a scarcity of information about the
novel gene ENSBTAG00000025383, it is part of the NDUFC1
Gene Tree, according to the Ensembl database. The NADH-
ubiquinone oxidoreductase (NDUF) enzymes are components of
the Complex I oxidative phosphorylation system in
mitochondria. In mammals, almost all the ATP molecules
required by the cells are generated by oxidative
phosphorylation in the mitochondrial respiratory chain (Papa
et al., 2002). Kim et al. (2009) and Karisa et al. (2013) found
NDUF genes related to beef cattle growth and fat deposition traits
(ribeye area and marbling). Corroborating these findings, Jeong
et al. (2013) studied transcriptome alterations on the skeletal
muscle of castrated Korean cattle that drives IMF deposition and

found upregulated NDUF genes enriched for the oxidative
phosphorylation process. Cesar et al. (2016), working with this
Nellore population, identified NDUF genes differentially
expressed in the skeletal muscle associated with fatty acid
content. Even though none of the cited studies found these
genes associated with the BFT, we have enough evidence to
support them as candidate genes.

Lastly, the enrichment analysis of the genes regulated/
containing eQTL encompassing relevant QTL associated with
the backfat thickness revealed cell cycle, development, and
transport pathways. We highlighted the WNT signaling, an
important regulator of adipogenesis (Bowers and Lane, 2008).
This pathway regulates mesenchymal stem cells, promotes
osteogenesis and myogenesis, and inhibits adipogenesis
through deacetylation of PPARγ and C/EBPα promoters, and
also, by blocking their expression (Bowers and Lane, 2008). In a
previous work (Silva-Vignato et al., 2017), studying the skeletal
muscle transcriptome of a subset of this Nellore population with
extreme values for BFT (high and low groups), we found the
WNT signaling enriched for an upregulated gene in the low BFT
group. Similarly, Li et al. (2017), working with a pig population
with divergent BFT phenotypes (high and low groups), identified
the WNT signaling enriched for the differentially expressed
miRNAs.

In conclusion, combining RNA-Seq information (expression and
SNP) with a high-density genotyping panel, allowed us to identify
relevant genomic regions and regulatory polymorphisms associated
with intramuscular fat and backfat thickness of Nellore cattle.
Within the genes regulated by eQTL associated with the interest
traits, we highlight that the transcription factors FOXP4, FOXO3,
ZSCAN2, and EBF4 are involved in lipid metabolism-related
pathways and may regulate major adipogenesis genes, such as the
PPARγ and C/EBPα. We also reported for the first time, a missense
cis-eQTL in the WDR73 gene associated with the intramuscular fat
content. These findings help us to improve our knowledge about the
genetic architecture that controls economically important carcass
and meat quality fat traits in bovine.
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