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Abstract: Mauritia flexuosa (buriti) pulp oil contains bioactive substances and lipids that are protective
against cardiovascular and inflammatory diseases. We performed physical and chemical analyses
to verify its quality and stability. buriti oil was stable according to the Rancimat test, presenting an
induction period of 6.6 h. We evaluated the effect of supplementation with crude buriti oil and olive oil
on metabolic parameters in 108 Swiss mice for 90 days. We investigated six groups: extra virgin olive
oil (EVOO) 1 and 2 (1000 and 2000 mg/kg), buriti oil (BO) 1 and 2 (1000 and 2000 mg/kg), synergic (S)
(BO1 + EVOO1), and control (water dose 1000 mg/kg). The animals were euthanized to examine their
blood, livers, and fats. The supplementation did not interfere with food consumption, weight gain, and
histological alterations in the liver. Group S showed the strongest relationship with the fractions HDL-c
and non-HDL-c, indicating a possible cardioprotective effect. Moreover, we observed significantly
higher IL-6 levels in the control, EVOO2, and BO1 groups than in the EVOO1 group. Resistin was also
significantly higher for the synergic treatment than for the control. We conclude that BO combined with
EVOO could be an excellent food supplement for human consumption.
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1. Introduction

Mauritia flexuosa L.f., regionally known as buriti, is a palm species (Arecaceae) dis-
tributed in tropical South America, especially in wetlands. The fruit has a thick, oily pulp,
with an orange color attributed to its contents of lipids and carotenoids (β-carotene), which
are the main antioxidants present. The fruit also contains fibers (22.18 g/100 g), potassium
(218 mg/100 g), calcium (80.49 mg/100 g), and iron (1.88 mg/100 g) [1–3]. The fiber content
can indicate it as an ally in intestinal health, disease prevention, and weight loss aid [2].

It is mentioned that buriti is considered a functional food precisely because of its vast
nutritional composition, especially when we analyze its oil, due to the preventive role for
several diseases related to oxidative stress [3]. The oil extracted from the buriti pulp is
utilized by the cosmetics industry for products such as sun creams and creams for treating
burns and preventing early skin aging due to its cicatrizing and antiaging action, which
is attributed to the antioxidants (carotenoids and tocopherols) that act by eliminating free
radicals [4,5].

Regarding its lipidic content, buriti oil presents a high oleic acid content (65.6%),
followed by palmitic acid (19.2%), and smaller fractions of the fatty acids linolenic, linoleic,
stearic, and myristic. This composition resembles olive oil, which indicates its high nutri-
tional quality since the oleic fatty acid is protective against diseases such as cardiovascular
and inflammatory diseases [6].

Furthermore, it has relevant antioxidant compounds, such as carotenoids and toco-
pherols, which prevent oxidative reactions in both food and the human body [7]. Of the
carotenoids, β-carotene represents the main fraction, reaching 70%. This carotenoid is re-
sponsible for protecting the oil from oxidative damage because it interacts with free radicals
and reactive oxygen species. In addition, they play a protective role in developing of some
types of cancer, as they protect cells and tissues from oxidative damage [7,8]. Regarding
tocopherols content, buriti oil has around 1169 µg/g, with α-tocopherol representing its
main fraction. [2].

Vegetable oils tend to possess nutritional properties that promote the maintenance
of health and, thus, can even help treat diseases because their compositions include fatty
acids and antioxidants. It is reported that antioxidant components, such as carotenoids,
tocopherols, and phenolic compounds, can act in synergy in foods and the organism
through various mechanisms, many of which are yet to be unraveled [9–12].

Inflammation is a process directly related to oxidative stress and when uncontrolled,
can lead to the development and progression of other disorders, e.g., cardiac and in-
testinal diseases [13,14]. Fatty acids and antioxidants have been shown to control the
development of inflammation, especially polyunsaturated fatty acids, which reduce the
levels of proinflammatory cytokines and also decrease clotting cascades related to platelet
damage [3,6,15].

Therefore, our work had the objective of characterizing the crude oil of the buriti pulp
and analyzing the effect of its supplementation for 90 days on the metabolism of Swiss
mice in the search for a new option of edible vegetable oil that promotes the maintenance
of health and the prevention of diseases.

2. Materials and Methods
2.1. Raw Materials

The crude oil extracted from the buriti pulp was acquired from Citróleo Group™,
produced by the cold pressing of the ripe fruits of Mauritia flexuosa. The extra virgin olive
oil was acquired from Andorinha Portugal®.

2.2. Fatty-Acid Profile and Nutritional Quality of Buriti Oil

The fatty acids were esterified according to the method adapted from Maya and
Rodriguez-Amaya [16]. The methyl esters of the fatty acids were analyzed by gas chro-
matography (GC 2010, Shimadzu, Kyoto, Japan) to obtain their peaks. We utilized a flame
ionization detector (FID) and a capillary column (BPX-70, internal diameter of 0.25 mm,
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30 m long, and 0.25 mm thick film). The temperature of the injector and the detector was
250 ◦C. The initial temperature of the column was kept at 80 ◦C for 3 min and then increased
by 10 ◦C/min until reaching 140 ◦C, followed by an increase to 240 ◦C/min for 5 min.

The individual peaks of the FAMEs (fatty-acid methyl esters) were identified by
comparing their relative retention times with the standard of 37 FAMEs (Supelco C22,
99% pure). Based on the profile of fatty acids, we evaluated the following indices related to
the nutritional quality of buriti oil:

1. Atherogenic index [17]:

Atherogenic index =
C12:0 + 4 x C14:0 + C16:0

Σ MUFA + Σ n6 + Σ n3
(1)

2. Thrombogenic index [17]:

Thrombogenic index =
C14:0 + C16:0 + C18:0

0.5× Σ MUFA + 0.5× Σ n6 + 3× Σ n3 + (n3/n6)
(2)

3. Hypocholesterolemic/hypercholesterolemic (HH) ratio [18]

HH ratio =
C18:1cis9 + C18:2n6 + C20:4n6 + C18:3n3 + C20:5n3 + C22:6n3

C14:0 + C16:0
(3)

2.3. Analyses of Quality and Identity of the Buriti Oil

We determined the indices of acidity (AOCS, 1990—method Ca 5a-40), peroxide
(AOCS, 1990—method Cd 8-53), refraction (AOCS, 1990—method Cc 7-25), iodine (AOCS,
1990—method Cd 1-25), saponification (AOCS, 1990—method Cd 3-25), and relative density
(AOCS, 1990—method Cc 10a-25) [19].

The acidity index was determined by adding a solution of ether alcohol (1:1), neutral-
izing the oil, and phenolphthalein as a color-changing indicator. As a titrant, we utilized
0.1N KOH until the pink color appeared, and the results were expressed in mgKOH/g.

The peroxide index was obtained by adding to the oil 5.0 mL of acetic acid–chloroform
(3:2), 0.1 mL of a saturated solution of potassium iodide, and 0.1 mL of soluble starch
(1%) as an indicator of color change, followed by incubation in the dark. Titration was
performed with a solution of sodium thiosulfate (0.01N), and the results were expressed in
MeqO2/kg.

The refraction index was obtained with a refractometer, Abbé (RL3, Tecnal, Ourinhos,
Brazil), calibrated with distilled water, with a refraction index of 1.3330, at 27 ◦C, with the
temperature corrected to 40 ◦C.

The iodine index was obtained by adding carbon tetrachloride and Wijs solution to
the oil. As a titrant, we utilized standardized sodium thiosulfate until the color changed
from black to pink, and the results were expressed in gI2/100 g.

The saponification index was determined by adding an alcoholic solution of KOH at
4% to the sample and performing reflux for 1 h. Next, phenolphthalein was added as a
color-changing indicator, titration was performed with HCl (0.5 N) until the color changed,
and the results were expressed in mgKOH/g.

The relative density was obtained using the pycnometer method, with the previous
taring in an oven at 105 ◦C. Next, water at 20–23 ◦C was added, and the mixture was placed
in a bath under a constant temperature (25 ± 0.1 ◦C). After 30 min, the water level was
adjusted and weighed on an analytical balance. The same procedure was performed with
the oil, and the results are expressed in milligrams per milliliter.

2.4. Optical Analyses of Buriti Oil: UV–Vis Absorption and Fluorescence Emission—Excitation Matrix

buriti oil samples were diluted in hexane (spectroscopic grade, 99.9%) at 5 g/L. We
utilized a quartz cuvette with a 10 mm optical path and four polished sides for optical
measurements. The UV–vis absorption measurements were performed using a spectropho-
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tometer (Lambda 265 UV/Vis, Perkin Elmer, Waltham, USA). The UV–vis absorption
spectra were collected in the 200–600 nm range.

The fluorescence map (excitation/emission) of the oil was obtained utilizing a bench
spectrofluorometer, FS-2 (Scinco, Seoul, Korea). The fluorescence excitation/emission
matrices were obtained by exciting the samples in the 250–400 nm range, with steps of
5 nm, and the emission was collected between 250 and 600 nm, with a 1 nm resolution.
For all tests, the excitation and emission slits were set at 5 nm, and all measurements were
performed at room temperature.

2.5. Oxidative Stability: Rancimat Test

The oxidative stability was determined by obtaining the induction period (IP) through
the Rancimat test, following the EM 14,112 method, by utilizing the Rancimat equipment
(893 Professional Biodiesel Rancimat, Metrohm, São Paulo, Brazil). The analysis was
performed by adding 3 g of oil without a solution for a reaction in a glass vase at 110 ◦C;
then, the mixture was analyzed under a constant airflow of 10 L/h, passing through
the samples and then flowing into a measuring recipient containing 50 mL of deionized
water, where the conductivity generated by volatile products during oil degradation was
measured as a function of time [20].

2.6. Thermic Analyses: Thermogravimetry/Derived Thermogravimetry (TG/DTG) and Differential
Scanning Calorimetry (DSC)

The TG/DTG curves of buriti oil were obtained using a thermic analysis system
(TGA Q50 of TA Instruments), with approximately 5.0 mg of sample in an inert nitrogen
atmosphere, with a flow of 60 mL min−1 in an oven and 50 mL min−1 on a balance, and
with heating at a rate of 10 ◦C min−1, to temperatures varying from ambient to 700 ◦C,
using platinum crucibles for the samples.

The DSC curves were obtained in a DSC Q20 of TA Instruments coupled to a re-
frigerator system, RCS 90 (Refrigerated Cooling System), utilizing approximately 2.3 mg
of sample, aluminium crucibles, and a similar empty crucible as a reference, in an inert
nitrogen atmosphere with a flow of 50 mL min−1. After inserting the sample, the cell
temperature was balanced at 60 ◦C, following an isotherm for 10 min. Then, the sample
was cooled down to –60 ◦C at a cooling rate of 5 ◦C min−1, followed by a new isotherm for
10 min. Last, the sample was heated to 60 ◦C at 5 ◦C min −1. The total analysis time was
70 min.

2.7. Antioxidant Activity: ORAC (Oxygen Radical Absorbance Capacity) Lipophilic, ABTS
(2,2′-Azino-Bis (3-Ethylbenzothiazoline-6-Sulfonic Acid) and FRAP (Ferric Reducing Antioxidant
Power) Methods

The ORAC lipophilic method was used based on Ou et al. [21], diluting the oil in a
solution of randomly methylated 7-cyclodextrin (RMCD) (RMCD Trappsol®) at 7%, which
was performed in aqueous acetone at 50% (v/v). After aliquoting the samples diluted in
dark microplates, fluorescein and 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)
were diluted in phosphate buffer (pH 7.4) and were rapidly added to the plate. The
microplate was read in a reader with fluorescent filters, with an excitation wavelength of
485 nm and emission wavelength of 520 nm, and the fluorescence was read every min for
80 min. The area under the curve was calculated as described by Dávalos et al. [22]. The
results were expressed in Trolox equivalent (TE) micromoles per 100 mL.

The antioxidant activity was determined by the ABTS method according to Rufino
et al. [23]. An ABTS cationic solution was prepared by mixing 5 mL of ABTS (7 mM) and
88 µL of potassium persulfate solution (150 mM). The solution was reacted for 16 h at
ambient temperature and in the absence of light. After the ABTS·+ radical was formed,
we added ethanol until we obtained an absorbance value of 0.600 (±0.05) at 754 nm. The
absorbance of the samples was determined at ambient temperature after 6 min of reaction.
As a standard, we utilized Trolox as a reference antioxidant, and the results were expressed
in micromoles of TE per 100 mL.
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The FRAP method was used to determine the capacity for ferric reduction of the
methanolic extract [24]. The FRAP reagent was prepared in the dark, using acetate buffer
at 0.3 M (pH 3.6), TPTZ (10 mM) in a chloride acid solution (40 mM), and FeCl3 (20 mM)
(10:1:1). The samples or standard solution (Trolox), water and FRAP reagent were mixed
and incubated in an oven for 30 min at 37 ◦C. The absorbance of the samples and the
standard Trolox curve at 595 nm was read, and the results were expressed in micromoles of
TE per 100 mL.

2.8. Total Phenols (or Phenolic Compounds)

The total phenolics were quantified using the Folin–Ciocalteu method adapted from
Swain and Hills [25] using microplates, and the absorbance was detected at 795 nm in a
spectrophotometer (Thermo Scientific Multiskan GO, Thermo Fisher Scientific Corporation,
Dubai, United Arab Emirates) after 90 min of rest. The results were expressed in milligrams
of gallic acid equivalent (GAE) per 100 mL.

2.9. β-Carotene

To determine the β-carotene, we utilized the method of Maldonade et al. [26] to form
an ether extract and performed absorbance readings in a spectrophotometer (450 nm). We
utilized a standard of β-carotene (99% purity). The results were expressed in milligrams
per 100 g of oil.

2.10. Coloration

The oil color was analyzed using the colorimeter (CM-2300d, Konica Minolta, Ramsey,
NJ, USA), which expresses results on the CIE L*a*b* scale, where L* indicates the lightness,
a* represents the band of red (+a) to green color (−a), and b* represents the band of yellow
(+b) to blue color (−b). We obtained the hue and chroma angle indices from the results as
established by Minolta Corporation [27].

2.11. Experimental Design

The experiment was developed according to the ethical principles of Law no. 11,794
of 8 October 2008, of the Decree no. 6899 of 15 July 2009, and the rules established by the
National Council of Control of Animal Experimentation (CONCEA), and was approved by
the Ethics Commission on the Use of Animals (CEUA) of UFMS (no. 1055/2019) (Annex 1).

We utilized 108 male, adult, 12-week-old Swiss mice (Mus musculus) obtained from the
Biotherium of UFMS. The animals had a 7-day adaptation period in cages with a maximum
of 4 individuals/cage. In the adaptation and experimental phase, the animals were kept in
a quiet room under controlled temperature (23 ± 1 ◦C) and a 12 h of light/dark cycle, with
access to food and water ad libitum.

2.11.1. Animal Groups

The animals were randomly split into six groups: a control group (receiving water
at the dose of 1000 mg/kg), buriti oil group 1 (BO1) (receiving buriti oil at a dose of
1000 mg/kg), buriti oil group 2 (BO2) (receiving buriti oil at a dose of 2000 mg/kg), extra
virgin olive oil 1 (EVOO1) (receiving extra virgin olive oil at a dose of 1000 mg/kg), extra
virgin olive oil 2 (EVOO2) (receiving extra virgin olive oil at a dose of 2000 mg/kg), and
synergic group (receiving a mix of BO1 and EVOO1), as shown in Figure 1 (adapted from
Figueiredo et al. [28] and Silva et al. [29]).
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Figure 1. Intervention protocol for the supplementation with buriti oil. C, control group (without
lipidic supplementation); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra virgin olive oil
(2000 mg/kg); BO1, buriti oil (1000 mg/kg); BO2, buriti oil (2000 mg/kg); Synergic, EVOO1 + BO1.

The doses were administered daily via gavage during the 90 days of supplementation,
being adjusted weekly to the weight of each animal. All the groups received standard
commercial animal feed (Nuvital®). We weighed the animals weekly to verify the weekly
food consumption.

2.11.2. Euthanasia and Autopsy Sampling

Before euthanasia, the animals were made to fast for 8 h and provided only water. They
were anesthetized with isoflurane for the procedure and euthanized by exsanguination.
The visceral fats (epidydimal, mesenteric, retroperitoneal, and perirenal) and the liver were
removed and weighed on a semianalytical electronic balance (Bel Diagnóstica®), and the
values are expressed in grams, adapted from Chau et al. [30]. The adiposity index was
calculated according to the formula of Taylor and Phillips [31].

2.11.3. Serum Parameters

After collecting blood from the posterior vena cava, the blood was centrifuged at
17,000 rpm for 20 min in a centrifuge (Fanem®) to obtain the serum. An aliquot of 200 µL
of serum was stored in an Eppendorf tube at −18 ◦C. We determined the levels of total
cholesterol, high-density lipoprotein cholesterol (HDL-c), non-HDL-c, triglycerides, and
glucose, utilizing the enzymatic–colorimetric method and spectrophotometric measure-
ments [32–34].

2.11.4. Histology of the Liver

The removed liver was stored in collector pots with formaldehyde at 10% for histolog-
ical analyses. An experienced pathologist undertook the histological analyses in a blinded
fashion. The analyses of the treatment effects on hepatocytes were performed utilizing
the classification system of Kleiner et al. [35], assessing the Degree of Hepatic Steatosis
(<5%, 5 to 33%, 33 to 66%, or >66%); Microvesicular Steatosis (absent or present); Lobular
Inflammation (absent, <1 focus/field, 2 to 4 foci/field or >4 foci/field); Baloonization
(absent, few cells or many cells); Mallory Hyaline (absent or present); Glucogened Nucleus
(none/rare or a few); and Apoptosis (absent or present).
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2.11.5. Cytokines

The serum concentrations of interleukin-6 (IL-6) adipokines, monocyte chemoattrac-
tant protein-1 (MCP-1), tumor necrosis factor α (TNF-α), total plasminogen activator
inhibitor-1 (PAI-1), insulin, leptin, and resistin were measured using the kit MILLIPLEX®

MAP MOUSE MADKMAG-71K (Merck Sigma-Aldrich® Millipore, Billerica, MA, USA).
Therefore, we separated the serum by centrifugation, subjected it to a vortex for 30 s and
centrifuged it (6000 rpm for 10 min). Next, we spread 10 µL of the serum of each animal on
a plate with 96 wells with 10 µL of assay buffer solution and 25 µL of a solution containing
seven adipokines. We also prepared the white, standard, and control parameters (Milliplex
MAP kit, Billerica, MA, USA). We read the plate in the Luminex® using the software
MAGPIX®, and the concentration values are expressed in picograms per milliliter and
milligrams per milliliter.

2.11.6. Statistical Analyses

The physical–chemical analyses were conducted in triplicate, and the results are
expressed as the mean ± standard deviation of the mean (DP). The biological experiment
results are expressed as the mean ± standard error of the mean (SEM). Analysis of variance
(ANOVA) was used to compare groups, followed by Tukey’s post hoc or Dunn’s test when
differences occurred. We utilized the chi-square test to evaluate the associations in the
histological analyses, followed by Bonferroni corrections, using the statistical program
Bioestat 5.0. The adopted significance level was p < 0.05.

3. Results and Discussion
3.1. Profile of Fatty Acids and Nutritional Quality of Buriti Oil

We identified twenty-one fatty acids in buriti oil, of which five showed values above
0.30%, as described in Table 1.

Among the fatty acids found, buriti oil showed the highest amounts of monounsat-
urated, among which the oleic fatty acid was the one that represented the main fraction
(76.38%). Other acids found were the fatty acid palmitic (17.86%) and minor fractions of
stearic fatty acid (1.07%), α-linolenic (0.83%), and γ-linolenic (0.37%).

Our results corroborate those found for buriti oil in previous studies, that reported in
buriti oil the fatty acids oleic (65.60–73.05%), followed by palmitic (17.35–22.18%) [7,36,37].
Small variations found between studies may occur due to genetic factors of the species,
environmental conditions, and even the analytical techniques used [7].

Furthermore, its composition is similar to that of olive oil, which presents oleic acid as
the main fatty acid fraction (74.70%), followed by palmitic (12.20%), linoleic (8.50%), stearic
(2.40%), and linolenic (0.60%) acid [38]. That indicates that buriti oil has an excellent lipidic
profile regarding its high oleic acid content.

Vegetable oils with high oleic acid contents are less susceptible to oxidative reactions
than oils with high contents of polyunsaturated fatty acids, especially linoleic fatty acid
and, therefore, more stable [7,36]. Additionally, vegetable oils similar in profile to buriti oil
can be alternatives for industrial use, such as margarine [37].

It is worth pointing out that oleic acid is also of high relevance for health because it
is essential for the formation of hormones and preventing oxidative stress by stimulating
the production of anti-inflammatory mediators, helping to protect against cardiovascular
diseases, for example [39–41].

From the oil’s profile of fatty acids, we calculated the indices of nutritional quality
(Table 2), indicators for predicting the possible risk for developing cardiovascular dis-
eases [17].
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Table 1. Fatty acid profile (%) of buriti oil.

Fatty Acids Buriti Oil (%)

Saturated
Butyric, C4:0 0.09 ± 0.01

Myristic, C14:0 0.05 ± 0.01
Pentadecanoic, C15:0 0.02 ± 0.01

Palmitic, C16:0 17.86 ± 0.00
Heptadecanoic, C17:0 0.07 ± 0.02

Stearic, C18:0 1.07 ± 0.01
Arachidic, C20:0 0.08 ± 0.01

∑ TOTAL 19.24
Monounsaturated
Palmitoleic, C16:1 0.18 ± 0.02

Cis-10-heptadecanoic, C17:1 0.05 ± 0.01
Oleic, C18:1 76.38 ± 0.03

Gadoleic, C20:1 0.03 ± 0.00
Erucic, C22:1 0.03 ± 0.01

Nervonic, C24:1 0.02 ± 0.01
∑ TOTAL 76.69

Polyunsaturated
Linoleic, C18:2 0.01 ± 0.00

α-linolenic, C18:3 0.83 ± 0.01
γ-linolenic, C18:3 0.37 ± 0.02

Cis-11,14-eicosadienoic, C20:2 0.04 ± 0.01
Arachidonic, C20:4 0.02 ± 0.01

Eicosapentanoic, C20:5 0.03 ± 0.01
Cis-13,16-docosadienoic, C22:2 0.03 ± 0.01

Cis-4,7,10,13,16,19-docosahexaenoic, C22:6 0.02 ± 0.00
∑ TOTAL 1.35

The means were determined from triplicates. Values are expressed as the mean± standard deviation of the mean.

Table 2. Indices of nutritional quality of buriti oil.

Indices Buriti Oil

Atherogenic 0.23
Thrombogenic 0.15

Hypocholesterolemic/hypercholesterolemic 4.31

There is a gap in the values for those indicators described in the legislation; thus,
they are recommended to be the lowest possible [17]. Therefore, such indicators should be
utilized in a manner complementary to other analyses because, in isolation, they do not
represent the real biological action in animal models [42,43].

3.2. Analyses of Quality and Identity of the Buriti Oil

Vegetable oils should have acceptable nutritional and chemical quality, as defined
by quality and identity indicators, which are also utilized to screen for possible adulter-
ations [42]. In Table 3, we describe the results obtained for buriti oil.

Table 3. Indices of quality and identity for the buriti oil.

Indices Buriti Oil

Acidity (mgKOH/g) 4.70 ± 0.18
Peroxide (mEq2/kg) 2.13 ± 0.30
Refraction at 40 ◦C 1.47 ± 0.00
Iodide (gI2/100 g) 87.56 ± 0.77

Saponification (mgKOH/g) 188.62 ± 3.31
Relative density (mg/mL) 0.91 ± 0.00

The means were determined from triplicates. Values are expressed as the mean± standard deviation of the mean.
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buriti oil presented an acidity index above the limit established by the Codex Alimen-
tarius [44] for cold-pressed crude vegetable oils (<4 mgKOH/g) is superior to that reported
in the literature for the same oil as in the study by Pardauil et al. [39] (2.67 mgKOH/g)
and Freitas et al. [36] (3.99 mgKOH/g). That could be due to the extraction process (cold
pressing) retaining organic compounds, such as free fatty acids [45].

The peroxide index is another indicator related to the quality of vegetable oils; it iden-
tifies the presence or absence of hydroperoxides formed in the initial oxidation steps [46].
In our study, buriti oil remained under the limit defined for this indicator (15 mEO2/kg)
for crude and cold-pressed oils, indicating that it was not oxidized [44].

This result can be attributed to the antioxidant components present in buriti oil, such
as phenolic compounds, carotenoids, and tocopherols, which help prevent oxidative events.
The result found is lower than that described by the literature for the same oil, with values
of 4.03 mEqO2/kg [39] and 6.86 mEqO2/kg [39].

The refraction index we determined for buriti oil was similar to the indices reported
in the literature (1.46–1.47) [36,47]. This indicator is related to the viscosity, indicating
deterioration because deteriorated oils become more viscous [46].

The iodide index is related to the unsaturation degree. It is a relevant indicator for de-
termining the oil’s vulnerability to oxidation because the higher the degree of unsaturation,
the more predisposed it is to oxidation [40,48]. For buriti oil, we detected an index similar
to that previously described (81.10 to 90 gI2/100 g) [47].

For the saponification index, our result was within the limit established by the Codex
Alimentarius [44] (<200 mgKOH/g). Values above this limit indicate the presence of higher
quantities of fatty acids of low molecular weight [48].

For the relative density, our result was similar to that reported in the literature (0.90 to
0.92 mg/mL) [45,47].

3.3. Optical Analyses: UV–Vis Absorption and Emission—Excitation Fluorescence Matrix

Figure 2 shows the UV–vis absorption spectra of buriti oil and indicates that it pre-
sented absorption in the UV range of 250–350 nm that could be attributed to the π − π∗

and n − π∗ electronic transitions originating from C=C and C=O, respectively, of fatty
acids and their oxidative derivatives [49,50], as well as to the contribution of tocopherols,
which present a strong absorption below 300 nm [51,52]. Regarding UV absorption, we
also observed an absorption band in the range of 370-520 nm, which was attributed to the
presence of carotenoids [53,54].

Therefore, our results for the UV–vis spectrum indicate the presence of the band of
carotenoids, with absorption in the blue-greenish range (375–520 nm), implying that they
are the main natural pigments present in buriti oil.

Figure 3 shows the emission–excitation fluorescence matrix for buriti oil, whereby it
is possible to observe high-intensity emission between 300–500 nm when excited in the
250–350 nm range, presenting a maximum of fluorescence with the excitation/emission
at around 310/350 nm. The observed emission band can be ascribed to the endogenous
fluorescent compounds in vegetable oils, such as tocopherols and carotenoids [50]. It is well
known that tocopherols present a relatively intense emission band in the 300–350 nm range
when excited between 270 and 310 nm, as observed by Sikorska et al. for edible oils [55].



Nutrients 2022, 14, 2547 10 of 22

Nutrients 2022, 14, x 10 of 23 
 

 

 
Figure 2. UV–vis absorption spectra of buriti oil diluted in hexane at 5 g/L. 

Therefore, our results for the UV–vis spectrum indicate the presence of the band of 
carotenoids, with absorption in the blue-greenish range (375–520 nm), implying that they 
are the main natural pigments present in buriti oil. 

Figure 3 shows the emission–excitation fluorescence matrix for buriti oil, whereby it 
is possible to observe high-intensity emission between 300–500 nm when excited in the 
250–350 nm range, presenting a maximum of fluorescence with the excitation/emission at 
around 310/350 nm. The observed emission band can be ascribed to the endogenous fluo-
rescent compounds in vegetable oils, such as tocopherols and carotenoids [50]. It is well 
known that tocopherols present a relatively intense emission band in the 300–350 nm 
range when excited between 270 and 310 nm, as observed by Sikorska et al. for edible oils 
[55]. 

Figure 2. UV–vis absorption spectra of buriti oil diluted in hexane at 5 g/L.

Nutrients 2022, 14, x 11 of 23 
 

 

 
Figure 3. Emission–excitation map of buriti oil diluted in hexane at 5 g/L. 

3.4. Oxidative Stability: Rancimat 
The Rancimat test can provide the IP of oils, which directly indicates their oxidation 

and quality during a heating phase, whereby the lower the quantity of polyunsaturated 
fatty acids, the higher the IP value [49]. 

In our study, buriti oil showed an IP of 6.60 h (Figure 4), lower than the observed 
value for olive oil (9.02 h) but superior to the values for other vegetable oils, such as sun-
flower (2.41 h) and rapeseed (4.95 h) [49]. 

 
Figure 4. Electric conductivity versus time determined by the Rancimat method for buriti oil. 

Figure 3. Emission–excitation map of buriti oil diluted in hexane at 5 g/L.

3.4. Oxidative Stability: Rancimat

The Rancimat test can provide the IP of oils, which directly indicates their oxidation
and quality during a heating phase, whereby the lower the quantity of polyunsaturated
fatty acids, the higher the IP value [49].

In our study, buriti oil showed an IP of 6.60 h (Figure 4), lower than the observed value
for olive oil (9.02 h) but superior to the values for other vegetable oils, such as sunflower
(2.41 h) and rapeseed (4.95 h) [49].
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3.5. Thermic Analyses: TG/DTG and DSC

The TG/DTG curves for buriti oil indicate that the thermal decomposition occurred
in two well-defined steps, including the first mass loss approximately between 174 and
276 ◦C, attributed to moisture loss and the volatilization of relatively low molecular weight
compounds (aldehydes and short-chain fatty acids). The second mass loss occurred between
276 and 479 ◦C, which can be attributed to the decomposition of the long-chain fatty acids,
which lose mass at different temperatures [39,56]. In this event, we observed a mass loss of
93.38% and the formation of a residue of ashes of 0.3038%, as shown in Figure 5.
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The DSC curves for buriti oil are presented in Figure 6. We observed two endothermic
events in the first cycle (cooling) relative to the crystallization temperatures of mixtures
of saturated and unsaturated fatty acids, respectively. The temperatures were calculated
with the help of the onset point tool and the absorbed and liberated energies (∆H), with the
integration tool for the peak area, both in the software Universal Analysis (TA Instruments).
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The first peak begins at around −7.8 ◦C, with a maximum peak close to −11.4 ◦C, and
∆H of 7.992 J·g−1. The second, sharper, well-defined peak begins at around −35.7 ◦C, with
a maximum peak at −40.37 ◦C and ∆H of 26.59 J·g−1. According to Alexandre et al. [57],
such peak characteristics are related to unsaturated fatty acids in higher quantities, as can
be verified in Table 1.

Regarding the heating curve (second cycle), we observed the fusion points of the
unsaturated and saturated fatty acids, respectively. The first peak occurs at around−17.6 ◦C,
with a maximum peak at −5.3 ◦C and ∆H of 38.43 J·g−1, and the second, at around 0.1 ◦C,
with a maximum at 8.85 ◦C, and ∆H of 22.38 J·g−1. That displacement of the initial
temperatures between the events in different cycles (cooling x heating) is to be expected
due to the different kinetics of the physical processes.

The literature shows that vegetable oils with higher contents of unsaturated fatty acids
present crystallization points closer to−50 ◦C due to more energy being needed to organize
the structure to crystallize [58].

The results obtained by Freitas et al. [35] for the DSC curves show similar temperatures
for the fusion and crystallization of buriti oil because of its content of triacylglycerols, and
both points occur within temperature ranges rather than at specific temperatures.

3.6. Antioxidant Activity: ORAC, ABTS, and FRAP Methods

The antioxidant activity of buriti oil assessed through ORAC, ABTS, and FRAP meth-
ods is described below (Table 4).

Table 4. Antioxidant activity of buriti oil.

Parameters Buriti Oil

ORAC (µmol TE/100 mL) 1.55 ± 0.03
ABTS (µmol TE/100 mL) 1758.02 ± 6.97
FRAP (µmol TE/100 mL) 164.86 ± 2.41

The means were determined from triplicates. Values are expressed as the mean± standard deviation of the mean.
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Each method determines the antioxidant activity of a sample in one mode. The ORAC
method, for example, utilizes the transference of hydrogen to determine how much a
compound can protect against the degradation of fluorescein; the higher the antioxidant
capacity, the lower the degradation [7,59].

In turn, the ABTS method measures the antioxidant capacity of a compound based on
the transference of hydrogen and electrons, and the FRAP method measures the reduction
capacity of an antioxidant through its reaction with the iron tripyridyl triazine complex,
resulting in a colored iron tripyridyl triazine complex [4,59].

For the three methods, our results were lower than those already reported for buriti
oil, which could have various causes, such as the solvent type, processing, and even
environmental factors [7,60]. Despite that, it was possible to observe that buriti oil showed
antioxidant potential attributed to its antioxidant components, such as carotenoids and
total phenolic compounds.

3.7. Total Phenolic Compounds

Phenolic compounds are antioxidants found in relevant foods because they prevent
oxidative stress and reduce inflammatory processes and bacterial infections. Furthermore,
they can protect other components present in foods, such as unsaturated fatty acids and
tocopherols [7,61].

In our study, the content of total phenolic compounds found in buriti oil
(21.57 ± 0.83 mgAGE/100 g) was superior to that reported in the literature
(10.70 mgAGE/100 g) [6,7]. Variations in content can occur due to differences in the envi-
ronmental conditions of each collected fruit [7].

3.8. β-Carotene

We detected 51.01 ± 1.46 mg/100 g of β-carotene in buriti oil. However, our result
was inferior to the 71 mg/100 g [6] and 78.16 mg/100 g [7] reported by other authors for
the same oil. The buriti oil had β-carotene as its main carotenoid fraction, reaching 70% of
your composition [7].

This result, associated with the other antioxidants present, reflected its stability, as
highlighted above, and may reflect on health effects since such carotenoid acts by protecting
cells from the action of free radicals [7,8].

3.9. Coloration

Table 5 shows the colorimetric parameters of buriti oil, where we observed that the
L* (lightness) was darker, as also observed for its saturation (C*). For a* (red axe (+)/green (−)),
the result was positive, indicating a more reddish color, and for b* (yellow axe (+)/blue (−)),
the result was also positive, indicating a more yellowish color.

Table 5. Colorimetric parameters of buriti oil.

Parameters Buriti Oil

L* 43.87 ± 0.00
C* 34.72 ± 0.00

Hue (◦) 72.99 ± 0.00
a* 26.73 ± 0.00
b* 22.16 ± 0.00

The means were determined from triplicates. Values are expressed as the mean ± standard deviation of the mean.
L*, lightness; C*, saturation; a*, red axe (=)/green (−) and b*, yellow axe (=)/blue (−).

Buriti oil presented a yellowish color based on the observation of the hue angle (◦),
indicative of tone. such results can be attributed to the presence of the carotenoids com-
mon in the composition of buriti oil and representing the primary pigments, especially
β-carotene, as previously reported.
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3.10. Experimental Design
3.10.1. Weight Gain and Food Ingestion

The animals were weighed weekly to monitor weight gain. Through the results, we did
not observe significant differences between groups for final weight and food intake (Table 6),
a result similar to that reported by Aquino et al. [62], in which Wistar rats supplemented
with buriti oil did not show significant differences and did not differ from the other groups
receiving other oils as supplementation (soybean oil and refined buriti oil).

Table 6. Final weight (g) of the animals after 90 days of supplementation and mean daily food
ingestion (g/day).

Parameters C
(n = 12)

EVOO1
(n = 12)

EVOO2
(n = 12)

BO1
(n = 12)

BO2
(n = 12)

Synergic
(n = 12)

Final weight 45.05 ± 1.38 45.16 ± 1.39 44.44 ± 1.33 47.77 ± 1.52 45.00 ± 0.88 46.61 ± 0.98
Daily food
ingestion 5.85 ± 0.13 5.58 ± 0.03 5.72 ± 0.05 5.76 ± 0.06 5.83 ± 0.05 5.78 ± 0.08

Values are expressed as the mean ± standard error of the mean. C, control group (without lipidic supplementa-
tion); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra virgin olive oil (2000 mg/kg); BO1, buriti oil
(1000 mg/kg); BO, buriti oil (2000 mg/kg); Synergic, EVOO1 + BO1.

Therefore, we observed that the different types of oils and in different doses were not
responsible for alterations in the weight and consumption of food for the animals after
90 days of supplementation.

3.10.2. Weights of Liver and Visceral Fats, and Adiposity Index

Regarding the liver weight and adiposity index, we did not detect significant differ-
ences between groups (Table 7).

Table 7. Weights (g) of liver and visceral fats (g), and adiposity index (%).

Parameters C
(n = 12)

EVOO1
(n = 12)

EVOO2
(n = 12)

BO1
(n = 12)

BO2
(n = 12)

Synergic
(n = 12)

Liver 1.82 ± 0.06 1.77 ± 0.06 1.84 ± 0.07 2.03 ± 0.11 1.74 ± 0.03 1.91 ± 0.06
Epidydimal 1.34 ± 0.13 1.52 ± 0.11 1.62 ± 0.14 1.62 ± 0.14 1.53 ± 0.13 1.76 ± 0.11
Mesenteric 0.75 ± 0.08 ab 0.78 ± 0.09 b 0.47 ± 0.04 a 0.61 ± 0.06 ab 0.67 ± 0.06 ab 0.71 ± 0.05 ab

Retroperitoneal 0.49 ± 0.04 0.56 ± 0.04 0.44 ± 0.04 0.60 ± 0.05 0.57 ± 0.04 0.60 ± 0.04
Perirenal 0.21 ± 0.02 ab 0.22 ± 0.02 ab 0.14 ± 0.01 a 0.20 ± 0.01 ab 0.20 ± 0.01 ab 0.25 ± 0.02 b

Adiposity index 6.32 ± 0.43 6.53 ± 0.38 5.50 ± 0.45 6.55 ± 0.35 6.70 ± 0.40 7.21 ± 0.33

C, control group (without lipidic supplementation); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra
virgin olive oil (2000 mg/kg); BO1, buriti oil (1000 mg/kg); BO2, buriti oil (2000 mg/kg); Synergic, EVOO1 + BO1.
Values are expressed as the mean ± standard error of the mean. Different letters in the same line indicate
significant differences in the comparison between groups (p < 0.05): one-way ANOVA with Tukey’s post hoc
test. Notes: a: indicates the group with the lowest value for the analyzed parameter and that differed from the
group with letter b; ab: indicates the group that did not differ statistically from the groups with the highest and
lowest value for the analyzed parameter (a and b); b: indicates the group with the highest value for the analyzed
parameter and that differed from the group with letter a.

Lipid supplements at different concentrations caused only minor changes in liver
weight and fat sites. Only the mesenteric and perirenal fats presented significant differences
between groups for the visceral fats. For mesenteric fat, the EVOO1 group differed from
the EVOO2 group, while for the perirenal, the EVOO2 group differed from the synergic
group. Regarding the adiposity index, there was no statistically significant difference
between groups, and the low adiposity index found can be attributed to the high content of
unsaturated fatty acids that are responsible for helping to reduce body fat [41].
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3.10.3. Biochemical Parameters

Regarding the biochemical parameters, the contents of triglycerides, fastening glucose,
and total cholesterol did not present significant differences between groups, as described in
Table 8. The fractions HDL-c and non-HDL-c presented significant differences.

Table 8. Biochemical parameters (mg.dL−1) of the animals after 90 days of supplementation.

Parameters C
(n = 12)

EVOO1
(n = 12)

EVOO2
(n = 12)

BO1
(n = 12)

BO2
(n = 12)

Synergic
(n = 12)

Triglycerides 210.57±12.30 171.62 ± 7.34 182.63 ± 8.50 194.61 ± 14.24 180.40 ± 7.58 182.18 ± 7.32
Glucose 172.38 ± 28.94 173.15 ± 15.87 163.85 ± 13.02 162.78 ± 14.97 180.85 ± 17.65 168.87 ± 15.90

Total
cholesterol 1.59.47 ± 5.81 165.80 ± 8.40 150.18 ± 7.55 150.67 ± 7.51 160.46 ± 7.86 158.13 ± 4.75

HDL-c 91.90 ± 3.17 a 92.05 ± 4.16 ab 82.61 ± 4.97 a 90.75 ± 5.05 ab 101.48 ± 5.45 b 106.85 ± 4.33 b

Non-HDL-c 77.57 ± 3.59 b 78.88 ± 6.40 b 64.80 ± 5.22 ab 59.90 ± 4.09 a 62.33 ± 4.20 ab 51.11 ± 2.04 a

C, control group (without lipidic supplementation); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra
virgin olive oil (2000 mg/kg); BO1, buriti oil (1000 mg/kg); BO2, buriti oil (2000 mg/kg); Synergic, EVOO1 + BO1;
HDL-c, high-density lipoprotein cholesterol. Values are expressed as the mean ± standard error of the mean.
Different letters in the same line indicate significant differences in the comparison between groups (p < 0.05);
one-way ANOVA followed by Tukey’s post hoc test. Notes: a: indicates the group with the lowest value for the
analyzed parameter and that differed from the group with letter b; ab: indicates the group that did not differ
statistically from the groups with the highest and lowest value for the analyzed parameter (a and b); b: indicates
the group with the highest value for the analyzed parameter and that differed from the group with letter a.

For HDL-c, we observed that the control group, with the highest value, differed from
the synergic (p = 0.03) and BO2 (p = 0.037) groups, while the EVOO2 group, also with a low
value, differed from the synergic (p = 0.04) and BO2 (p = 0.05) groups. In the non-HDL-c
fraction, we observed that the control group, with the highest value, differed from the
synergic (p = 0.001) and BO1 (p = 0.001) groups, while the EVOO1 group, also with a higher
value, differed from the BO1 (p = 0.036) and synergic groups (p = 0.001).

It is possible to note that the synergic group presented the best relation between the
cholesterol fractions because the higher the HDL-c content and the lower the non-HDL-c
content, the more protective the supplementation was against cardiovascular diseases
when we associate both results.

This result may have been due to combined fatty acids from buriti oil and olive oil. As
the main fractions, both oils have monounsaturated fatty acids (such as oleic acid), which
have been shown to prevent inflammatory diseases and show anti-atherogenic activity,
besides controlling the glycemic profile [10,63,64].

The antioxidants present in both oils (BO + EVOO) may also have influenced the result
because they can reduce the LDL-c content, prevent platelet aggregation, and increase the
action of HDL-c, as described in the literature for these isolated components, also indicating
its synergistic action [30,65,66].

3.10.4. Hepatic Histology

Among the analyzed groups, only the BO1 group presented an animal with steatosis
>5%, with no association between the presence of steatosis and the experimental groups
being observed (p = 0.41). In another study, the consumption of buriti oil at the highest
dose (100 mg) also induced steatosis in the animals [67]. However, it was important that
the animals in this study were obese, which may have contributed to the result (which was
not observed in our animal study).

However, in our study, the localization of the steatosis could not be analyzed due to
the low frequency of the observations. Microvesicular steatosis was not observed in any
of the analyzed groups; therefore, it was not possible to carry out an inferential statistical
analysis (Table 9).
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Table 9. Histopathological analyses of the liver with scores for hepatic steatosis, localization of
steatosis, macrovesicular steatosis, lobular inflammation, ballooning, Mallory hyaline, apoptosis, and
nuclear glycogenation of the animals after 90 days of supplementation.

Variables C
(n = 12)

EVOO1
(n = 12)

EVOO2
(n = 12)

BO1
(n = 12)

BO2
(n = 12)

Synergic
(n = 12)

Steatosis
(p = 0.41)

<5% 100.00 (12) 100.00 (12) 100.00 (12) 91.70 (11) 100.00 (12) 100.00 (12)
5 a 33% 0.00 (0) 0.00 (0) 0.00 (0) 8.30 (1) 0.00 (0) 0.00 (0)

Localization of
steatosis *

Zone 1 0.00 (0) 0.00 (0) 0.00 (0) 8.30 (1) 0.00 (0) 8.30 (1)
Zone 3 0.00 (0) 8.30 (1) 0.00 (0) 8.30 (1) 0.00 (0) 0.00 (0)

Not applicable 100.00 (12) 91.70 (11) 100.00 (12) 83.30 (10) 100.00 (12) 91.70 (11)
Microvesicular

steatosis *
Absent 100.00 (12) 100.00 (12) 100.00 (12) 100.00 (12) 100.00 (12) 100.00 (12)
Lobular

inflammation
(p = 0.09)
No focus 100.00 (12) 75.00 (9) 75.00 (9) 50.00 (6) 50.00 (6) 83.30 (10)

<2 foci/field 0.00 (0) 8.30 (1) 25.00 (3) 41.70(5) 41.70 (5) 16.70 (2)
2–4 foci/field 0.00 (0) 16.70 (2) 0.00 (0) 8.30 (1) 8.30 (1) 0.00 (0)
Ballooning (p

= 0.01)
Absent 58.30 (7) b 8.30(1) a 58.30(7) b 33.30 (4) ab 33.30 (4) ab 25.00 (3) ab

Few cells 41.70 (5) 58.30 (7) 41.70 (5) 25.00 (3) 66.70 (8) 58.30 (7)
Many cells 0.00 (0) 33.30 (4) 0.00 (0) 41.70 (5) 0.00 (0) 16.70 (2)

Mallory
hyaline (p =

0.41)
Absent 100.00 (12) 100.00 (12) 100.00 (12) 91.70 (11) 100.00 (12) 100.00 (12)

Rare 0.00 (0) 0.00 (0) 0.00 (0) 8.30 (1) 0.00 (0) 0.00 (0)
Apoptosis (p =

0.40)
Absent 100.00 (12) 75.00 (9) 91.70 (11) 75.00 (9) 83.30 (10) 91.70 (11)

Rare
hepatocytes 0.00 (0) 25.00 (3) 8.30 (1) 25.00 (3) 16.70 (2) 8.30 (1)

Nuclear
glycogenation

(p = 0.41)
None to rare 100.00 (12) 91.70 (11) 100.00 (12) 100.00 (12) 100.00 (12) 100.00 (12)

Much 0.00 (0) 8.30 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

C, control group (without lipidic supplementation); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra
virgin olive oil (2000 mg/kg); BO1, buriti oil (1000 mg/kg); BO2, buriti oil (2000 mg/kg); Synergic, EVOO1 + BO1.
Data are presented as the relative frequency (absolute frequency). p values were determined with chi-squared
tests with Bonferroni corrections. Different letters in the same line indicate significant differences between groups.
Notes: a: indicates the group with the lowest value for the analyzed parameter and that differed from the
group with letter b; ab: indicates the group that did not differ statistically from the groups with the highest and
lowest value for the analyzed parameter (a and b); b: indicates the group with the highest value for the analyzed
parameter and that differed from the group with letter a. * It was not possible to perform inferential analysis due
to the distribution of the sampling size.

The absence of steatosis could be related to the antioxidants present in both oils,
which protect against hepatic damage caused by different factors, such as proinflammatory
cytokines including TNF-α and IL-6 [68,69].

Regarding lobular inflammation, most animals did not present foci independent from
the experimental group (p = 0.09). By contrast, the association between the groups was
significant in the ballooning data. The EVOO1 group presented a higher prevalence of
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ballooned cells than the control and EVOO2 groups; however, there was no difference
between the other groups (p = 0.01).

Only the BO1 group presented Mallory hyaline in one animal, which was absent in
all the other groups (p = 0.41). Additionally, we did not find an association between the
groups and the presence of apoptosis (p = 0.40) or nuclear glycogenation (p = 0.41), as the
latter was identified in only one animal of the AOE1 group.

3.10.5. Quantification of Cytokines

The results for the total PAI-1, TNF-α, IL-6, MCP-1, leptin, insulin, and resistin can be
observed below (Figure 7).
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Figure 7. Concentration of cytokines in the serum after 90 days of supplementation. C, control group
(without lipidic supplementation); EVOO1, extra virgin olive oil (1000 mg/kg); EVOO2, extra virgin
olive oil (2000 mg/kg); BO1, crude buriti oil (1000 mg/kg); BO2, crude buriti oil (2000 mg/kg);
S, synergic—BO1 + EVOO1. The values represent the mean ± standard error of the mean. For the
total PAI-1 (p = 0.119), TNF-α (p = 0.063), MCP-1 (0.066), leptin (0.467), and insulin (0.583), there
was no significant difference between the groups. ANOVA, followed by Tukey’s post hoc test. For
IL-6 and resistin, the values differed between them (p = 0.003 and 0.025, respectively), according to
ANOVA followed by Dunn’s post hoc test. Notes: a: indicates the group with the lowest value for the
analyzed parameter and that differed from the group with letter b; b: indicates the group with the
highest value for the analyzed parameter and that differed from the group with letter a.

The adipose tissue is an endocrine organ capable of secreting adipokines and hor-
mones that directly influence the development of inflammation. With an imbalance in
the production of these substances, one can observe the development of an inflammatory
condition and, thus, alterations, such as insulin resistance, steatosis, and cardiovascular
diseases [70,71].

Thus, it is extremely important to verify the impact that diet and lifestyle habits
influence the markers formed in adipose tissue, especially targeting the loss of weight that
demonstrates to improve the concentrations of these parameters [72].
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Among the markers analyzed in our study, only IL-6 and resistin demonstrated
significant differences between the groups. In this case, IL-6 showed a significant difference
(p = 0.003) in that the control, EVOO2, and BO1 groups differed from the EVOO1 group.

IL-6 is a proinflammatory cytokine related to the development of insulin resistance,
especially observed in high concentrations in obese individuals [11,70,71,73]. Additionally,
the excessive production of IL-6 can affect the liver’s metabolism due to the induction of
the secretion of VLDL-c (very-low-density lipoprotein) [69].

It is possible to conclude from our results that olive oil at the lowest dose reduced the
concentrations of IL-6 and, thus, could have helped to prevent its elevation in the synergic
group. The literature reports that the richness of olive oil in antioxidants such as oleuropein
and hydroxytyrosol can reduce pro-inflammatory cytokines and, thus, protect the organism
from inflammation [74].

We observed a significant difference (p = 0.025) regarding resistin between the control
and synergic groups. Resistin is an adipocytokine commonly found in the organism
when inflammation is already present, and as IL-6 levels rise, resistin concentrations also
increase [75].

However, in our study, we observed an opposite relationship: the EVOO1 group, with
the lowest IL-6 level, showed one of the highest concentrations of resistin, while the control
group presented high IL-6 levels and the lowest resistin concentrations.

In general, all the parameters we analyzed are correlated with the development or
inhibition of alterations in the organism when adipose tissue increases. Despite relevant
markers such as IL-6 and resistin showing significant differences, we did not detect signifi-
cance associated with the preventive role of antioxidants and fatty acids in buriti oil and
extra virgin olive oil for many parameters.

It is also observed that the EVOO1 group was the best possible against markers to
igniters and that its association with buriti oil (synergistic group) had better results when
compared to the group, getting the lowest dose of this oil (BO1), and thus indicating the
joint action of the antioxidants present in the two oils.

4. Conclusions

In this in vivo study, we observed that the crude oil extracted from buriti pulp shows
excellent oxidative stability for its bioactive compounds; supplementation with the oil did
not interfere with food consumption and weight and did not cause significant histological
alterations in the livers of animals fed with a normocaloric diet.

Furthermore, synergic supplementation in the animals (BO1 + EVOO1) showed the
strongest relationship between HDL-c and non-HDL-c, indicating a possible cardiopro-
tective effect. The association of buriti oil with olive oil also improved inflammatory
parameters, such as IL-6, compared with the BO1 group.

Thus, we conclude that buriti oil is an excellent option for edible vegetable oil. Its
consumption should be incentivized in addition to that of extra virgin olive oil, another
source of antioxidants and monounsaturated fatty acids.

We highlight the importance of further studies on the impacts of consumption in ani-
mals consuming hypercaloric diets regarding overweight and its associated comorbidities.
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