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Abstract The effect of different dietary concentrations of shrimp protein hydrolysate

(SPH) on digestive enzyme activity of Nile tilapia juveniles was evaluated. SPH con-

centrations in diets were 0, 15, 30 and 60 g kg-1 (treatments SPH0, SPH15, SPH30 and

SPH60, respectively). Hemoglobin, azocasein, BApNA (Na-benzoyl-DL-arginine-p-nitro-

anilide), SApNA (Suc-Ala-Ala-Pro-Phe p-nitroanilide), aminoacyl of b-naphthylamide

and starch were used as substrates for enzyme activity determinations. The activity of

total alkaline protease was significantly higher (P \ 0.05) in fish under SPH15 and

SPH60 treatments than in the control (SPH0). However, the effect was not dose-

dependent. Substrate-SDS-PAGE was also performed to evaluate changes in the profile
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of Nile tilapia digestive proteases caused by SPH. Substrate-SDS-PAGE revealed 12

active proteolytic bands, eight of which responded to SPH dietary incorporation. Inhi-

bition substrate-SDS-PAGE indicated a decrease in the activity of three enzymes, with

trypsin activity decreasing with the increase of SPH concentration, whereas the opposite

occurred for two aminopeptidases. Distinct protease profiles were also found for each

treatment, suggesting adaptability of digestive proteases from Nile tilapia to the different

diets.

Keywords Digestive proteases and amylases � Nile tilapia � SDS-PAGE zymograms �
Shrimp protein hydrolysate

Introduction

Tilapia production has increased significantly on a global scale in the last decade. This

development has been followed by an increase in feed consumption, stimulating the

search for new ingredients in diet formulations (Schulz et al. 2007). The growth of

the aquaculture industry has generated large amounts of waste and by-products, which

represent a challenge to the sustainability of the activity (Bezerra et al. 2001). Shrimp

processing waste, for instance, may be disposed of in the environment, where it may

potentially pollute water and land. By-products of terrestrial and aquatic farming systems

may be processed into suitable ingredients and used as components in animal feeds,

following biosecurity principles for feed applications. Shrimp processing waste has been

identified as an animal protein source of great potential (Fanimo et al. 2000). A simple

protocol for producing protein hydrolysate from white shrimp Litopenaeus vannamei
(Boone) processing waste through autolysis has recently been developed (Cahú et al.

2012). This method renders a protein concentrate that is considered to be an excellent

source of amino acids, with high levels of glutamate, aspartate, leucine, lysine, tyrosine

and arginine (Leal et al. 2010). In fact, crustacean protein silage and hydrolysate have

been used in fish feeds both as a new protein source (Plascência-Jatomea et al. 2002)

and, in small amounts, as flavoring to enhance the attractiveness of feeds (Kolkovski

et al. 2000).

Variations in the quality and quantity of nutrients used in diet formulations may modify

enzymatic profile and activity in the digestive tract of animals (Lundstedt et al. 2004).

Thus, feed composition could induce biological adaptations, including an increase in

nutrient absorption (Moraes and Bidinotto 2000). Digestive enzymes have been investi-

gated as a way of understanding nutritional requirements, and the effects of diet compo-

sition on enzyme activity in order to reduce feeding costs in fish farms (Caruso et al. 1996).

Most studies thus far have evaluated the effect of different concentrations of protein,

carbohydrates and lipids in feed formulations, correlating these results with enzyme

activity, and differences in enzyme quality profile may be related to nutrient levels in the

diet (Fountoulaki et al. 2005).

The present survey focuses on the following aspects: (a) the detectable changes in the

activity of the main digestive enzymes caused by different concentrations of shrimp protein

hydrolysate in tilapia feeds and (b) the use of substrate-SDS-PAGE zymograms as an

effective tool to improve the analysis of these changes.
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Materials and methods

Materials

All reagents were of analytical grade and purchased from Sigma (St. Louis, MO, USA) and

Merck (Darmstadt, Germany). The diets were prepared in Poytara LTDA (Araraquara—

São Paulo—Brazil).

Shrimp protein hydrolysate production

Shrimp head processing waste, comprising the cephalothorax without the body carapace,

from L. vannamei juveniles (total body weight about 10–12 g) was provided by a local

fishery processing plant (EMPAF Ltd.). SPH used in experimental diets was prepared

according to Cahú et al. (2012). In total, approximately 20 kg of shrimp cephalothoraxes

was obtained. The shrimp heads were washed and stored at -20 �C in plastic bags con-

taining 1 kg of the material. After that, the raw material was crushed in distilled water (1:1

ratio; particle size approximately 5 mm). The enzymatic autolysis (proteases from the

shrimp midgut gland) occurred in a vessel placed in a water bath at 45 ± 2 �C for 180 min

with constant stirring (700 rpm). The solution was then heated to 100 �C for 10 min in

order to deactivate the enzymes, and the solid portion was strained through a 1.0-mm sieve

(Cahú et al. 2012). The resulting material was centrifuged at 10,0009g for 10 min, and the

supernatants (SPH) was stored in plastic bottles at -20 �C until the preparation of the diets

(Leal et al. 2010). The production method was similar to the industrial processes. Previ-

ously frozen-dried samples of SPH (n = 3) were used for proximate composition and

AA analyses (Tables 1, 2) in Protein Chemical Center of the Faculdade de Medicina de

Ribeirão Preto, São Paulo, Brazil (AOAC 1984).

Hydrolysis profile of SPH

Enzymatic hydrolysis of SPH (45 �C) was followed by sampling at the incubation times of

0, 30, 60, 90, 120, 150 and 180 min. The hydrolysis profile of shrimp protein hydrolysate

(Aliquots of 100 lg of protein, n = 3) was evaluated in sodium dodecyl sulfate poly-

acrylamide gel electrophoresis (SDS-PAGE), using stacking gel at 4 % (w/v) and sepa-

ration gel at 17 % (Laemmli 1970). The gels were stained for protein overnight in 0.01 %

(w/v) Coomassie Brilliant Blue. The background of the gel was destained by washing in a

solution containing 10 % (v/v) acetic acid and 25 % (v/v) methanol. The molecular mass

of the protein bands was estimated using the 220–10 kDa molecular mass protein standards

(Sigma).

Table 1 Proximate composition
(%) and energy of lyophilized
shrimp protein hydrolisate

SPH, from Litopenaeus vannmei
(Leal et al. 2010)

Composition Mean

Moisture (%) 9.7

Crude protein (%) 43.6

Ether extract (%) 6.2

Ash (%) 7.3

Carbohydrate (%) 33.1

Energy (Kcal 100 g-1) 363.3
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Diets preparation

According to Leal et al. (2010), four isonitrogenous (37 % crude protein), isocaloric (total

energy: 440 kcal 100 g-1) experimental diets were formulated to feed Oreochromis nil-
oticus juveniles (Table 3). Shrimp protein hydrolysate (SPH) was included in the diets

at concentrations of 0 (control—SPH0), 15 (SPH15), 30 (SPH30) and 60 g kg-1 (SPH60),

as a fed basis. A 1:2 animal/plant protein ratio (fishmeal and soybean meal, respectively) in

the diets was established. SPH (liquid) was mixed with soybean meal, and the dough was

dried at 65 �C for 24 h. The ingredients were mixed and the diets prepared by extrusion

under industrial conditions to obtain 1-mm diameter pellets.

Animals and culture conditions

Juvenile sex-reversed Nile tilapias were obtained from the Aquaculture Station of the

Universidade Federal Rural de Pernambuco. The fish were stocked in fifteen 40-L glass

aquaria (8 ind. per aquarium) equipped with a biological filter and continuous aeration and

then submitted to a 7-day acclimatization period both for diets and experimental conditions

in a completely randomized design, with four treatments and three replicates. The animals

were kept in a photoperiod of 12:12 L:D. Prior to the feeding trial, fish were weighed

(1.7 ± 0.4 g) and measured (4.7 ± 0.4 cm). Individuals were fed a ratio of 15, 14, 12, 10,

8 and 6 % of biomass per day, adjusted every 9 days for a period of 45 days. Feed was

Table 2 Amino acid composi-
tion of the shrimp protein
hydrolisate

SPH from Litopenaeus vannamei
(Leal et al. 2010)

Amino acids SPH

mg 100 g-1 %

Essential

Arginine 3400 ± 0.043 7.3

Histidine 1060 ± 0.005 2.3

Isoleucine 2000 ± 0.021 4.3

Leucine 3490 ± 0.021 7.4

Lysine 3350 ± 0.000 7.2

Methionine 1290 ± 0.005 2.7

Phenylalanine 2370 ± 0.002 5.1

Threonine 2120 ± 0.031 4.5

Thryptophan 670 ± 0.016 1.4

Valine 2250 ± 0.012 4.8

Non-essential

Tyrosine 3370 ± 0.004 7.2

Aspartic acid 4270 ± 0.031 9.1

Glutamic acid 5780 ± 0.003 12.4

Glycine 2890 ± 0.005 6.2

Serine 2030 ± 0.001 4.3

Alanine 3070 ± 0.017 6.6

Proline 2970 ± 0.024 6.3

Cystine 410 ± 0.015 0.9

Total 46790 100
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offered 4 times per day. The fish accepted and fed on all diets over the experimental period

(Leal et al. 2010).

The aquaria were siphoned twice a day to remove solids, with 66 % water being

replaced with clean water every day. Temperature (28.7 ± 0.59 �C), dissolved oxygen

(3.5 ± 0.92 mg L-1) and pH (8.1 ± 0.19) were measured twice a day (n = 90). Ammonia

(0.14 ± 0.22 mg L-1) and nitrite (0.08 ± 0.02 mg L-1) were monitored once a week

(n = 6). Values are expressed as mean ± SE

Growth and nutrient utilization

The effects of SPH on the growth performance and nutrient utilization are shown in

Table 4. Growth performance was evaluated through weight gain rate (WG), average daily

gain (ADG), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency

Table 3 Composition and approximate analysis of the experimental diets

Ingredients (%) Diets

SPH 0 SPH 15 SPH 30 SPH 60

Fish meal (57 % CP) 23.0 22.0 21.0 18.0

Shrimp protein hydrolysate (SPH) 0.0 1.5 3.0 6.0

Soybean meal (40.4 % CP) 47.0 47.5 47.5 47.5

Wheat meal 16.0 13.5 13.5 15.5

Corn starch 10.5 12.0 11.5 9.5

Soybean oil 1.0 1.0 1.0 1.0

Dicalcium phosphate 1.0 1.0 1.0 1.0

Mineral and vitamin mixa 1.0 1.0 1.0 1.0

Salt 0.5 0.5 0.5 0.5

Antioxidant BHT 0.02 0.02 0.02 0.02

Proximate analysis (as-fed basis, g kg-1)

Dry matter 944.8 935.9 936.5 946.7

Crude protein 371.9 374.3 376.2 380.6

Ether extract 48.1 56.2 52.1 55.9

Crude fiber 39.7 38.8 41.1 46.6

Ash 105.7 102.9 101.6 101.9

Nitrogen-free extract 434.6 427.8 429.0 435.0

Calcium 22.2 21.7 20.0 17.2

Phosphorus 12.4 12.5 12.6 12.8

Gross energy (kcal 100 g-1)b 438.3 444.5 442.2 431.8

P/GE ratio (mg kcal-1) 84.9 84.1 84.6 88.0

Leal et al. 2010

CP crude protein, BHT butylated hydroxytoluene
a Mineral and vitamin mix (quantity kg-1 premix): vitamin A (20,000 UI), vitamin D3 (5,000UI), vitamin E
(250 mg), vitamin K3 (25 mg), vitamin B1 (37.5 mg), vitamin B2 (37.5 mg), vitamin B6 (25 mg), vitamin
B12 (0.053 mg), vitamin C (250 mg), niacin (200 mg), pantothenic acid (100 mg), biotin (1,25 mg), choline
(1000 mg), inositol (250 mg), Fe (100 mg), Cu (12 mg), Zn (125 mg), Mn (37.5 mg), Se (0.25 mg),
I (1.25 mg), Co (0.25 mg)
b Estimate based on 5.65, 4.2 and 9.5 kcal g-1 for proteins, carbohydrates and lipids, respectively
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ratio (PER) and apparent net protein utilization (ANPU) based on the following formulae:

WG (g) = BWf - BWi; ADG = WG (g)/time (days); SGR = 100 (Ln BWf - Ln BWi)/

time (days); FCR = dry feed offered (g)/wet weight gain (g); PER = wet weight gain (g)/

protein fed (g); and ANPU = 100 [(BWf 9 BCPf) - (BWi 9 BCPi)]/(TF 9 CP), in

which BWi and BWf = average initial and final body weight (g) of fish, respectively; BCPi

and BCPf = initial and final body crude protein (g 100 g-1), respectively; TF = total

amount of diet fed (g) and CP = crude protein of diet (g 100 g-1) (Leal et al. 2010).

Extraction of digestive enzymes

At the end of trial, fish were left to fast for 24 h, and six individuals from each replicate

aquarium (divided into two replicates per aquarium) were removed and killed in an ice

bath for biometric measurements and tissue removal, according to standard methodology

(Bezerra et al. 2001). Stomach and intestines were immediately collected and homogenized

(40 mg tissue mL-1) in 0.01 M Glycine–HCl pH 3.0 and 0.01 M Tris–HCl pH 8.0 buffers,

respectively, containing 0.15 M NaCl, using a tissue homogenizer. The resulting prepa-

rations were centrifuged at 10,0009g for 10 min at 4o C to remove cell debris and nuclei.

The supernatants (crude enzyme extracts) were frozen at -20 �C and used in further assays

(Bezerra et al. 2005). Protein concentration was determined according to Bradford (1976)

using bovine serum albumin (BSA) as the standard and reported as mg of protein equiv-

alent to BSA.

Total acid proteolytic activity

Acid protease activity was evaluated using hemoglobin (Hb) as the substrate as follows: in

microcentrifuge tubes, 100 lL of 2 % Hb in 0.06 M Glycine–HCl buffer pH 3.0 was

mixed with 50 lL stomach crude extract and 350 lL 0.5 M Glycine–HCl buffer pH 3.0 for

60 min at 25 �C. Five hundred microliters of 10 % trichloroacetic acid (TCA) was then

added to stop the reaction. After 15 min, centrifugation was carried out at 8,0009g for

Table 4 Growth performance and nutrient utilization in Nile tilapia fed on diets containing shrimp protein
hydrolysate instead of fish meal replacement

Diets SPH 0 SPH 15 SPH 30 SPH 60

Initial weight (g) 1.68 ± 0.14 1.72 ± 0.07 1.75 ± 0.09 1.81 ± 0.06

Final weight (g) 27.18 ± 2.43ns 29.46 ± 1.05ns 26.02 ± 3.07ns 25.19 ± 2.49ns

Survival (%) 100.0ns 100.0ns 100.0ns 100.0ns

WG (g)a 25.51 ± 2.57ns 27.73 ± 1.11ns 24.29 ± 3.04ns 23.39 ± 2.49ns

ADG (g day-1)b 0.57 ± 0.10ns 0.62 ± 0.04ns 0.54 ± 0.12ns 0.52 ± 0.10ns

SGR (% day-1)c 7.15 ± 0.58ns 7.38 ± 0.10ns 6.85 ± 0.68ns 6.73 ± 0.57ns

FCRd 1.15 ± 0.22ns 1.09 ± 0.16ns 1.13 ± 0.10ns 1.17 ± 0.12ns

PERe 2.26 ± 0.39ns 2.33 ± 0.36ns 2.20 ± 0.18ns 2.14 ± 0.22ns

ANPUf 39.31 ± 3.90ns 40.40 ± 3.64ns 38.59 ± 1.84ns 34.72 ± 2.08ns

Leal et al. 2010

Different superscripts in the same column denote statistical differences (P \ 0.05), and ‘‘ns’’ denotes no
statistical differences. Values are mean ± SE of five replicates
a Weight gain rate, b Average daily gain, c Specific growth rate, d Feed conversion ratio, e Protein effi-
ciency ratio, f Apparent net protein utilization
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10 min. The absorbance of supernatant (70 lL) was measured at 280 nm (Bio-Rad

SmartSpec 3000, USA) versus a similarly prepared blank in which 0.01 M Glycine–HCl

buffer pH 3.0 replaced the crude extract sample, based on a methodology adapted from

Dı́az-López et al. (1998). Previous experiments showed that, for the first 60 min, the

reaction carried out under the conditions described above followed first-order kinetics. One

unit (U) of enzyme activity was defined as the amount of enzyme capable of hydrolyzing

hemoglobin to produce a 0.001 change in absorbance per minute per milligram of

protein.

Total alkaline proteolytic activity

In microcentrifuge tubes, 1 % azocasein prepared in 0.1 M Tris–HCl buffer pH 8.0 was

incubated with intestine crude enzyme extract (30 lL) for 60 min at 25 �C. Two hundred

and forty lL of 10 % trichloroacetic acid (TCA) was then added to stop the reaction. After

15 min, centrifugation was carried out at 8,0009g for 5 min. The supernatant (70 lL) was

added to 1 M NaOH (130 lL) in a 96-well microtiter plate, and the absorbance of this

mixture was measured in a microtiter plate reader (Bio-Rad 680, Japan) at 450 nm versus a

similar prepared blank in which 0.01 M Tris–HCl pH 8.0 replaced the crude extract

sample. One unit (U) of enzyme activity was defined as the amount of enzyme capable of

hydrolyzing azocasein to produce a 0.001 change in absorbance per minute per milligram

of protein (Bezerra et al. 2005).

Trypsin and chymotrypsin activity

The activity of trypsin and chymotrypsin was determined using 8.0 mM BApNA (Na-

benzoyl-DL-arginine-p-nitroanilide) and 8.0 mM SApNA (Suc-Ala-Ala-Pro-Phe p-nitro-

anilide) in DMSO (dimethyl sulfoxide), respectively. Intestine crude enzyme extract

(30 lL) was incubated with 0.1 M Tris–HCl buffer pH 8.0 (140 lL) and respective sub-

strates (30 lL) in a microtiter plate reader (Bio-Rad 680, Japan). Absorbance was mea-

sured at 405 nm versus a similar prepared blank in which 0.1 M Tris–HCl pH 8.0 replaced

the crude extract sample. Enzyme activity was determined in triplicate. Trypsin and

chymotrypsin units of activity were expressed as a change in absorbance per minute per

milligram of protein (Bezerra et al. 2005).

Aminopeptidase activity

Aminopeptidase activity was evaluated using aminoacyl of b-naphthylamide (AA of

arginine) as substrate. The procedure adapted from Oliveira et al. (1999) was carried out in

triplicate, by incubating 4.2 mM substrate (50 lL), 50.0 mM sodium phosphate buffer pH

7.0 (600 lL) and deionised H2O (50 lL) at 37 �C. After temperature equilibration,

intestine crude extract (50 lL) was added, and 30 min later, the reaction was stopped by

adding 1 mg mL-1 fresh Garnet reagent (250 lL) in 0.2 M sodium acetate buffer pH 4.2

containing 10 % Tween 20 (v/v). After 10 min, absorbance was measured at 525 nm (Bio-

Rad SmartSpec 3000, USA), and the amount of b-naphthylamine was determined using a

standard b-naphthylamine curve. Activity was expressed as protease mU mg-1 of protein.

One unit of enzyme activity was defined as the amount of enzyme required to hydrolyze

one lmol of p-nitroaniline per minute per milligram of protein.
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Amylase activity

Amylase activity was evaluated according to Bernfeld (1955) using 2 % starch as

unspecific substrate: 60 lL intestine crude extract were incubated with 375 lL starch

solution and 375 lL 10 mM phosphate buffer pH 8.0 containing 15 mM NaCl at 25 �C.

After 20 min, 3.5-dinitro salicylic acid (DNSA) was added and the solution was heated to

100 �C for 10 min. After temperature equilibration, absorbance was measured at 570 nm

(Bio-Rad SmartSpec 3000, USA) versus a similarly prepared blank in which 10 mM

phosphate buffer replaced the crude extract sample. Enzyme activity was determined in

triplicate. One unit of enzyme activity was defined as the amount of enzyme required to

liberate 1 mg of maltose per milligram of protein per min.

Enzyme characterization in substrate-SDS-PAGE

Proteases from intestine crude extract of O. niloticus (Aliquots of 50 lg of protein, n = 3)

were studied in substrate sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) using stacking gel at 4 % (w/v) and separation gel at 12.5 % (Laemmli 1970).

Zymograms of protease activity were carried out based on Garcia-Carreño et al. (1993).

After electrophoresis, the gels were immersed in 2.5 % Triton X-100 dissolved in 0.1 M

Tris–HCl buffer pH 8.0 to remove the SDS and incubated with 3 % casein (w/v) in 0.1 M

Tris–HCl buffer pH 8.0 for 30 min at 4 �C. The temperature was raised to 37 �C and

maintained at this value for 90 min to allow the digestion of casein by the active fractions.

Finally, the gel was stained overnight for protein in 0.18 % (w/v) Coomassie Brilliant Blue

R250 prepared in acetic acid and methanol (10:25 % v/v), and the background of the gel

was distained in acetic acid and methanol (10:25 % v/v). Clear bands in blue background

denoted protease bands by digestion of casein substrate.

Inhibition assays using substrate-SDS-PAGE

The following inhibitors prepared in DMSO at a final concentration of 2 mM were used:

Tosyl phenylalanine chlorometyl ketone (TPCK—chymotrypsin inhibitor); Phenyl-methyl-

sulfonil-fluoride (PMSF—serine proteases inhibitor); benzamidine and tosyl-lysine chlo-

romethyl ketone (TLCK), both trypsin inhibitors; and bestatin (leucine aminopeptidase

inhibitor). For the inhibition study, only the crude extracts from animals under SPH0

treatment (n = 3) were used, since all caseinolytic bands were found in this treatment.

Samples of enzyme extract (100 lL) and inhibitors (100 lL) were incubated at 25 �C for

30 min. An aliquot of 50 lg of protein was collected and applied on each respective lane.

After that, the zymogram was performed as described above. The 100 % values (control)

were established using DMSO without inhibitors (Lemos et al. 2002, 2004).

Statistical analysis

All data were tested for normal distribution (Shapiro–Wilk test) and homogeneity of

variances (Bartlett’s test). One-way analysis of variance (ANOVA) by Tukey test was used

for normally distributed data, whereas Kruskal–Wallis test was used for non-normally

distributed data. Differences were reported as statistically significant when P \ 0.05, using

the SysEapro software (beta version).
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Results

Figure 1 shows the hydrolysis profile of SPH. Enzymatic autolysis (proteases from the

shrimp midgut gland) visibly promoted the digestion of proteins with the greatest

molecular mass over time. At time 0, most proteins had molecular mass between 15 and

70 kDa, at time 150 min, most proteins were smaller than 15 kDa.

Table 5 shows the enzyme activities in the crude extracts. Statistical differences

(P \ 0.05) between animals fed the experimental diets (SPH0, SPH15, SPH30 and SPH60)

were only observed for total alkaline proteases.

Substrate-SDS-PAGE zymograms revealed caseinolytic activity in crude extracts of fish

from all treatments (Fig. 2). Twelve caseinolytic bands were found in animals fed on SPH0

and were named P1 to P12, showing the highest number of active bands among treatments.

Proteases P1 to P4 were not significantly affected by the addition of the protein hydro-

lysate, but P5 to P12 underwent alterations in the caseinolytic pattern. As the concentration

of hydrolysate increased, there was a decrease in the activity of proteases P6, P7 and P8.

The opposite occurred for P5, P9, P10, P11 and P12, in which the caseinolytic bands

proved more intense.

The effect of specific inhibitors on the caseinolytic bands from fish crude enzyme

extract is shown in Fig. 3. As observed in Fig. 2, the zymogram of the crude extract

(SPH0) without inhibitors (control) revealed 12 caseinolytic bands. TPCK did not sig-

nificantly affect the caseinolytic activity of O. niloticus enzymes, and P11 was the only

Fig. 1 Hydrolysis profile of shrimp protein hydrolysate (using autolysis) in sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) using stacking gel at 4 % (w/v) and separation gel at 17 %.
Lanes correspond to molecular mass marker (MM) and incubation times of 0, 30, 60, 90, 120, 150 and
180 min of enzymatic hydrolysis. SPH was produced through autolysis of Litopenaeus vannamei
cephalothorax (heads)
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enzyme inhibited by TPCK. PMSF revealed high inhibition of P9 and P11 caseinolytic

bands. Benzamidine completely inhibited P6 and P8 bands. One band between P5 and P6

enzymes (white arrow) revealed activity in the presence of benzamidine, but it did not

appear in the control. TLCK strongly inhibited P3, P4, P6, P7, P8 and P11. Bestatin totally

inhibited seven digestive enzyme bands of O. niloticus (P3, P4, P5, P6, P7, P8 and P9).

Inhibitors had no effect on P1, P2, P10 and P12 caseinolytic bands.

Discussion

As can be observed in Fig. 1, autolysis efficiently solubilized and hydrolyzed protein from

shrimp processing waste (cephalothorax section) and produced protein hydrolysate, which

was shown to be a promising protein feedstuff for tilapia.

Table 5 Digestive enzyme activity of crude extracts recovered from stomach (acid) and intestine of
juvenile Nile tilapia O. niloticus fed on experimental diets containing increasing shrimp protein hydrolysate
levels (0–60 g kg-1)

Diets Acid proteolytic
activity

Alkaline
proteolytic
activity

Trypsin Chymotrypsin Aminopeptidase Amylase

SPH
0

155.84 ± 14.22ns 11.80 ± 0.55b 2.58 ± 0.09ns 22.70 ± 1.26ns 41.68 ± 3.32ns 45.47 ± 3.92ns

SPH
15

111.38 ± 22.83ns 15.35 ± 0.76a 3.38 ± 0.17ns 39.74 ± 3.94ns 45.34 ± 1.63ns 53.50 ± 4.65ns

SPH
30

162.49 ± 16.69ns 13.60 ± 0.73ab 2.82 ± 0.20ns 30.89 ± 2.42ns 47.66 ± 2.08ns 48.79 ± 4.82ns

SPH
60

132.19 ± 13.14ns 15.23 ± 0.88a 2.62 ± 0.15a 36.66 ± 3.60ns 39.85 ± 2.61ns 56.77 ± 4.31ns

Acid and alkaline proteolytic activity expressed as U mg of Protein (P) -1; trypsin, chymotrypsin and aminopep-
tidase activity expressed as mU mg-1 of P; and amylase activity expressed as mg of maltose min-1 mg of P-1.
Different superscripts in the same column denote statistical differences (P \ 0.05), and ‘‘ns’’ denotes no statistical
differences. Values are mean ± SE of five replicates

Fig. 2 Zymogram of digestive
proteases (3 % casein as
substrate) of intestine enzyme
extracts from juvenile Nile tilapia
O. niloticus fed on diets
containing different
concentrations of shrimp protein
hydrolysate (SPH). Lanes
correspond to dietary SPH
inclusion (%): SPH 0, SPH 1.5,
SPH 3 and SPH 6. Further details
in ‘‘Materials and methods’’
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Hydrolysis using exogenous substances allows better control of the properties of the

resulting products. However, the cost of the substances (enzymes, acids and solvents) is an

obstacle to the viability of the process. Autolysis is an enzymatic process that can be used

as an alternative to processes that employ exogenous substances to recover bioactive

molecules, such as chitin (for chitosan production) and carotenoids (Armenta and Guer-

rero-Legarreta 2009; Chen et al. 2011; Cahú et al. 2012). Moreover, autolysis is a common

method used to treat fish and shrimp waste, since it does not use any exogenous chemical

or biological additive, for example silage. The degree of hydrolysis affects certain product

properties, like viscosity, solubility and the partition of proteins. These, in turn, influence

the absorption capacity and rate of passage of the diet through the gastrointestinal tract.

The solubility of the hydrolysates depends on the nature of the raw material, method,

temperature and hydrolysis time (Kotzamanis et al. 2007). Plascência-Jatomea et al. (2002)

reported that the acidic conditions in which fermentative shrimp silage hydrolysate is

produced cause the loss of labile nutrients, such as tryptophan. Although the two products

have a very similar essential amino acid composition, the SPH produced here proved to be

an adequate source of tryptophan, as well as lysine, leucine, arginine, phenylalanine and

valine (Leal et al. 2010).

The use of hydrolyzed protein in diets for aquatic animals involves some particularities

that should be taken into account. For example, diets with high content of hydrolyzed

protein can lead to a loss of nutrients by lixiviation, because it contains high levels of small

peptides that are usually more soluble (Leal et al. 2010). The extent of hydrolysis can result

in protein hydrolysates with different contents of amino acids, di- and tripeptides, oligo-

peptides, polypeptides and proteins, which will ultimately result in differences in the

quality of the diet.

The nutritional value of a diet is not based simply on its chemical composition, but also

on the ability physiological fish to digest and absorb, according to these animals’ eating

habits. During digestion, these proteins are broken down into simpler compounds (peptides

and free amino acids) and then are absorbed by specific membrane proteins specialized in

peptide transport (e.g., PepT1) and utilized by the body (Sangaletti et al. 2009; Terova

et al. 2009; Verri et al. 2011). This degradation in the digestive tract is performed with the

assistance of enzymes. A number of authors have analyzed digestive enzyme activity in

aquatic organisms and dietary composition, reporting divergent results. Nagase (1964) and

Kohla et al. (1992) found enhanced trypsin activity, corresponding to an increase in

Fig. 3 Inhibition zymogram of
digestive proteases (3 % casein
as substrate) of intestine enzyme
extracts from juvenile Nile tilapia
O. niloticus fed the SPH 0 diet.
Lanes correspond to treatments:
control without inhibitors, TPCK,
PMSF, Benzamidine, TLCK and
Bestatin. Further details in
‘‘Materials and methods’’ and
Fig. 2
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feeding rates for the species Mozambique tilapia, Oreochromis mossambicus (Peters) and

Colossoma macropomum (Cuvier), respectively. Papoutsoglou and Lyndon (2006) found

an increase in chymotrypsin activity in Spotted wolfish, Anarhichas minor (Olafsen), when

the protein concentration was reduced, indicating the adaptation of this species to low

protein concentrations as a way to better absorb nutrients from the diet. Studies about the

effect of protein hydrolysates on the digestive enzymes from aquatic organisms are

available in the literature (Córdova-Murueta and Garcı́a-Carreño 2002; Cahu et al. 2004;

Zambonino Infante and Cahu 2007). However, there is little information regarding the

specific effects of dietary supplementation with shrimp protein hydrolysate on the digestive

enzymes in Nile tilapia.

In the present paper, no statistical differences in proteases activities were observed

among the SPH 0 (control) and treatments with higher concentrations of SPH (SPH15,

SPH30 and SPH60) (Table 5), or in growth parameters (final weight, survival, weight gain,

average daily gain, specific growth rate, feed conversion ratio, protein efficiency ratio, or

apparent net protein utilization) (Table 4) (Leal et al. 2010). Only the activity of total

alkaline protease was significantly higher (P \ 0.05) in the fish under SPH15 and SPH 60

treatments, when compared to SPH0 (control) (Table 5). No correlation was observed

between different concentrations of hydrolysate in the diets and the activity of any of the

enzymes studied.

European seabass, Dicentrarchus labrax (L) were fed diets containing enzymatic

hydrolyzed replacement for fish meal (native protein) in the proportions of 0, 20 and 40 %.

Zambonino Infante et al. (1997) demonstrated that fish to the trypsin activity was enhanced

by the native protein, whereas chymotrypsin activity was enhanced by the diets containing

di- and tripeptides. On the other hand, Kotzamanis et al. (2007) also evaluated the

inclusion effect of protein hydrolysate on the digestive enzyme activities in European

seabass, D. labrax larvae fed on diets with 10 and 19 % protein hydrolysate. They found no

statistical differences in amylase and trypsin activity between treatments. However, ami-

nopeptidase activity was higher when 10 % protein hydrolysate was administered. Thus,

the absence of statistical difference found for most enzymes, and growth parameters can be

related to the loss of SPH by lixiviation. In addition, commercial substrates used in this

study showed no sensitivity to detect differences in most of the enzymatic activities; in

other words, it was observed that the effects of SPH on the digestive enzymes were

comparably small and not dose-dependent.

The different results observed in the literature and those obtained here led us to consider

other methods. The zymograms afforded to observe the dose-dependent effect of SPH on

some proteases (caseinolytic bands). In fact, zymograms appear to be a more sensitive

biochemical tool in comparison with other methods for detecting the proteinase compo-

sition of crude extracts from tissues and to allow the determination of enzyme activity

zones (Garcia-Carreño et al. 1993).

Through analyses of inhibition zymograms, it was possible to determine the following:

one caseinolytic band with aminopeptidase activity (inhibited only by Bestatin, P5) and

probably another aminopeptidase (P9) inhibited by Bestatin and by PMSF; some other

active bands, P3, P4, P6, P7, P8 and P11, seemed to be proteases of low specificity, with

trypsin/aminopeptidase activity (P3, P4, P6, P7 and P8 which were inhibited by trypsin

inhibitors and by Bestatin) and chymotrypsin/trypsin activity (P11 which was inhibited by

PMSF, TPCK and TLCK). It was not possible to identify P1, P2, P10 and P12, as none of

the inhibitors had any effect on these proteases. Comparing the zymogram of enzyme

activity according to dietary treatment to the inhibition gel, at increased concentration of

shrimp protein hydrolysate, there was an overall slowdown of proteases with trypsin
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activity (P6, P7 and P8). On the other hand, it was identified that the caseinolytic bands P5

and P9 (identified as aminopeptidase activity, Fig. 3) grew in intensity with increasing SPH

contents. The caseinolytic bands P10 and P12 (not identified) and P11 (with chymotrypsin-

like/trypsin-like activity) also exhibited an increase in intensity with the inclusion of SPH

in the diet. Cahu et al. (2004) found that trypsin secretion was higher in larvae of the

D. labrax fed on diets with 14 % protein hydrolysate, being reduced with increasing

concentrations (46 %).

Zymograms in Figs. 2 and 3 show that the classical protease inhibitors herein employed

were not effective upon some caseinolytic bands (P1, P2, P10 and P12), and in some cases,

the inhibitory effect was not conclusive (P3, P4, P6, P7, P8, P9 and P11), suggesting a low

compatibility of these enzymes with mammalian proteases. In fact, these commercial

inhibitors are generally synthesized based on the mammalian enzyme mechanism, and as

the fish digestive system may be considerably different from that of mammals, differences

in the mechanisms of their enzymes may also occur. In spite of the results of the present

work, tilapia digestive enzymes were not considerably affected by classical trypsin

inhibitors. Bezerra et al. (2005) showed that purified Nile tilapia trypsin could be strongly

inhibited by TLCK and Benzamidine. PMSF was shown able to inhibit about 50 % of

trypsin activity.

Although there were differences in digestive enzyme activity (total alkaline proteases)

between fish fed different experimental diets, there was no clear relationship between

enzyme activity and different concentrations of shrimp protein hydrolysate in these diets.

Substrate-SDS-PAGE zymogram proved to be efficient in detecting changes in enzyme

activity in fish submitted to different diets. Through this method, different protease profiles

could be detected according to experimental diet. These data underscore the suggested

ability of tilapia to adapt to different food sources. Actually, as an omnivorous opportu-

nistic fish, tilapia is able to assimilate nutrients from different sources, like benthic algae,

phytoplankton, macrophytes, zooplankton, small invertebrates, detritus and cyanobacteria.

The feed choice is mainly related to the availability of food items in the environment

(Bowen 1982; Fitzsimmons 1997; Stickney 1997; Beveridge and Baird 2000; Lowe-

McConnell 2000). To benefit from all these sources, the enzyme arsenal of tilapia should

be diverse enough to digest the wide range of ingested food.

Acknowledgments The authors would like to thank Albérico Espı́rito Santo and João Virgı́nio for their
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effects of diets on their activity. Z Vgl Physiol 49:270–284

Oliveira SM, Freitas JO, Alves KB (1999) Rabbit kidney aminopeptidases: purification and some properties.
Immunopharmacology 45:215–221

Papoutsoglou ES, Lyndon AR (2006) Digestive enzymes of Anarhichas minor and the effect of diet
composition on their performance. J Fish Biol 69:446–460

Plascência-Jatomea M, Olvera-Novoa MA, Arredondo-Figueroa JL, Hall GM, Shirai K (2002) Feasibility of
fishmeal replacement by shrimp head silage protein hydrolysate in Nile tilapia (Oreochromis niloticus
L) diets. J Sci Food Agric 82:753–759
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