QUADRO 98 — Resultados médios das determinações da Densidade do Solo, Porosidade Total, Macroporosidade, Microporosidade, Matéria Orgânica, Índice de Floculação, Índice de Plasticidade e Capacidade de Retenção de Água dos horizontes A1/Ape A3 dos perfis em estudo (média de 3 repetições). CNPMS, Sete Lagoas-MG.

| Horizontes | de pa Goeta, custer | Ds       | VTP     | Macro   | Micro   | МО     | IF 🥠     | IP      | CRA     |
|------------|---------------------|----------|---------|---------|---------|--------|----------|---------|---------|
|            |                     | N        |         | -       | %       |        |          |         |         |
|            | P. Convencional     | 1,10 a * | 58,33 b | 20,53 b | 37,80 a | 3,41 a | 38,67 a  | 9,80 b  | 17,23 a |
| A1/Ap      | P. direto           | 0,97 b   | 64,00 a | 24,67 a | 39,33 a | 3,69 a | 43,00 a  |         | 17,03 a |
|            | Solo original       | 1,00 b   | 63,67 a | 27,53 a | 36,13 b | 3,31 b | 25,67 b  | 11,03 a | 13,57 b |
|            | P. Convencional     | 0,99 a   | 62,67 b | 24,37 b | 38,30 a | 2,84 a | 37,67 b  | 10,10 a | 11,37 a |
| A3         | P. direto           | 0,91 a   | 66,00 a | 28,03 a | 37,97 a | 2,89 a | 93,00 a  | 9,70 a  | 9,40 a  |
|            | Solo original       | 0,88 b   | 67,33 a | 29,83 a | 37,50 a | 2,40 b | 100,00 a | 11,81 a | 11,97 a |

<sup>\*</sup>Nas colunas de cada horizonte, médias seguidas pela mesma letra não diferem estatisticamente pelo teste Tukey.

QUADRO 99 — Resumo da análise de variância para a Estabilidade de Agregados dos horizontes A1/Ap e A3 dos perfis em estudo. CNPMS, Sete Lagoas-MG.

| Causas de    | G.L. | Quadrados Médios |              |  |  |  |  |
|--------------|------|------------------|--------------|--|--|--|--|
| Variação     | G.L. | Horizonte A1/Ap  | Horizonte A3 |  |  |  |  |
| Peneiras (P) | 5    | 7237,5640 **     | 7150,906 **  |  |  |  |  |
| Cultivos (C) | 2    | 72,0892 **       | 6,5436*      |  |  |  |  |
| PxC          | 10   | 63,8149 **       | 12,7463 **   |  |  |  |  |
| Erro         | 54   | 2,7580           | 1,3264       |  |  |  |  |
| CV (%),)     |      | 9,03             | 6,18         |  |  |  |  |

<sup>\*</sup> F significativo ao nível de 5% de probabilidade.

fundidade de 0 a 15 cm, respectivamente para LVd e LEd.

Na Figura 18 os valores para a densidade aparente, determinados através do método anel volumétrico, foram sempre ligeiramente inferiores a aqueles medidos com a sonda de radiação gama. — Enio F. Costa, Lairson Couto.

## EFEITO DA COMPACTAÇÃO DE SOLO NA PRODUTIVIDADE DE MILHO EM LATOSSOLO VERMELHO-ESCURO

A rápida expansão da fronteira agrícola, ocupando áreas de cerrados muitas vezes sem tecnologia adequada, começa a apresentar sinais de manejo impróprio, entre eles a compactação de sub-superfície, originada possivelmente do manejo inadequado de máquinas e equipamentos agrícolas.

QUADRO 100 — Resumo das análises de variância para a Densidade do Solo, Volume Total de Poros, Macroporosidade, Microporosidade, Matéria Orgânica, Índice de Floculação, Índice de Plasticidade e Capacidade de Retenção de Água, dos diversos horizontes dos perfis em estudo. CNPMS, Sete Lagoas-MG.

| Causas de<br>Variação |    | Quadrados Médios |            |            |           |          |              |            |          |  |
|-----------------------|----|------------------|------------|------------|-----------|----------|--------------|------------|----------|--|
|                       | GL | Ds               | VTP        | Macro      | Micro     | MO       | IF           | IP         | CRA      |  |
| Y - 3-                |    | 1 1              |            | -1 5       |           |          | <u> </u>     |            |          |  |
| Horizonte (H)         | 5  | 0,0163 **        | 28,1333 ** | 34,0803 ** | 5,4625 *  | 9,077 ** | 5508,5220 ** | 46,2872 ** | 31,2447* |  |
| Cultivos (C)          | 2  | 0,0042 NS        | 20,7222 ** | 22,0617*   | 4,1172 NS | 0,1712 * | 506,0555 **  | 3,7121 NS  | 17,2452* |  |
| NxC                   | 10 | 0,0068 **        | 8,7222 **  | 13,7363 ** | 2,9674 NS | 0,0959 * | 781,8112 **  | 3,9400 **  | 13,2161* |  |
| Erro                  | 36 | 0,0017           | 2,5185     | 4,6429     | 1,9837    | 0,0343   | 45,0555      | 1,1817     | 1,8818   |  |
| CV (%)                |    | 4,39             | 2,43       | 7,76       | 3,75      | 9,56     | 8,06         | 12,91      | 10,96    |  |

<sup>\*</sup> F significativo ao nível de 5% de probabilidade.

<sup>\*\*</sup>F significativo ao nível de 1% de probabilidade.

<sup>\*\*</sup>F significativo ao nível de 1% de probabilidade.

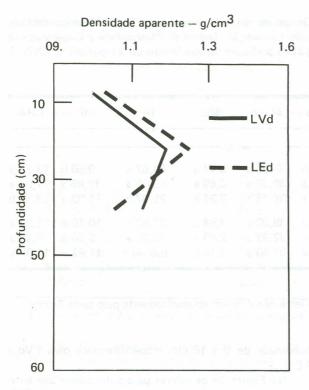



FIGURA 17. Densidade aparente, (anel Volumétrico — Trado UHLAND) em Latossolo Vermelho-Escuro (LEd) e Vermelho-Amarelo (LVd). Distrófico, Textura Argilosa, Fase Cerrado. CNPMS. Sete Lagoas, MG.

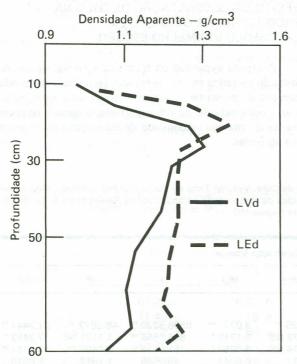



FIGURA 18. Densidade aparente, (Método Radiação Gama) em Latossolo Vermelho-Escuro (LEd) e Vermelho-Amarelo (LVd), Distrófico, Textura Argilosa, Fase Cerrado. CNPMS. Sete Lagoas, MG.

Com o objetivo de acompanhar os efeitos na produção e a modificação no solo, desenvolveu-se em laboratório uma curva de compactação para o Latossolo Verme-Iho-Escuro (Figura 19). Cinco níveis de compactação foram testados ao nível de campo na ausência e presença de irrigação (Figura 20). Parâmetros tais como: densidade aparente, densidade de partícula, resistência do solo à penetração, distribuição do tamanho de poros, distribui-

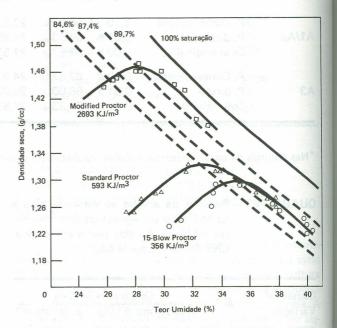



FIGURA 19. Curva de Compactação do Latossolo Vermelho-Escuro. CNPMS. Sete Lagoas, MG.

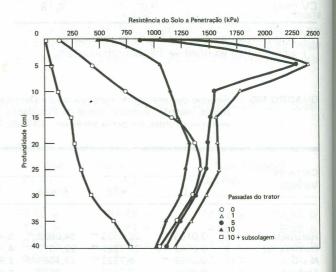



FIGURA 20. Resistência do solo a penetração nos 5 ní veis de compactação do solo nas diferentes profundidades. CNPMS. Sete Lagoas, MG.

ção do tamanho de partículas, estabilidade de agregados e distribuição de raízes foram estudados antes e depois da compactação, nas profundidades 0 a 7,5; 7,5 a 15; 15 a 22,5; 22,5 a 30; 30 a 37,5 e 37,5 a 45 cm. Outros parâmetros determinados foram: curva de retenção de água no solo, teor de umidade do solo durante todo o ciclo da cultura, altura de planta e produção. Desenvolveu-se um modelo estatístico de regressão para explicar compacta-

QUADRO 101. Modelo de compactação do solo — profundidade: 22,5 cm. CNPMS. Sete Lagoas, MG.

 $Y_{g/cc}$  = 460.527 + 0.0117716 CL - 7.58957 x 10<sup>-4</sup> CL<sup>2</sup> - 8.44308 x 10<sup>-3</sup> SMC - 0.497864 SMC<sup>2</sup> + 5.09276 Ln (SMC) + 0.019416 MA - 0.0010204 MA<sup>2</sup> - 0.0145785 MI

 $R^2 = 74.71$ 

Descrição das variáveis:

Y = densidade aparente do solo, g/cc

CL = Níveis de compactação; número de passadas do pneu do trator exercendo uma pressão de contato do pneu de 0.78 e 0.70 kg/cm<sup>2</sup> no pneu traseiro e dianteiro respectivamente.

SMC = Teor de umidade do solo durante a compactação, cm.

MA = macroporosidade, %

MI = microporosidade, %.

QUADRO 102. Modelo de produção. CNPMS, Sete Lagoas, MG.

Y (kg/ha) = -3438.3 + 2645.09 (IL) - 108.856 (PH<sub>4</sub>) + 923.67 (SMC<sub>13</sub>) + 27.99 (PH<sub>8</sub>)

 $R^2 = 85.44$ 

Descrição das variáveis:

Y = produção de milho, kg/ha

IL = níveis de irrigação

PH<sub>4</sub> = altura de planta medida 4 semanas após o plantio,

PH<sub>8</sub> = altura de planta medida 8 semanas após o plantio, cm

SMC = média do teor de umidade do solo durante as 13 primeiras semanas após o plantio, cm.

ção (Quadro 101) e produção (Quadro 102) com os parâmetros estudados. Os resultados mostraram que não houve diferença significativa entre os tratamentos com relação à produção; somente os tratamentos com irrigação e sem irrigação é que diferiram significativamente. Os níveis de compactação alteraram tanto a macro como a micro porosidade sem alterar a porosidade total. O sistema radicular não sofreu impedimento, ou seja, a resistência do solo à penetração desapareceu devido à grande precipitação ocorrida no início da cultura. Para maior confiabilidade do modelo de regressão e verificação dos efeitos na produção estão sendo feitos estudos adicionais. — Evandro C. Mantovani.

## SISTEMAS DE PRODUÇÃO

PRODUÇÃO DE FLORES E VINGAMENTO FLORAL DE CULTIVARES DE FEIJÃO EM MONOCULTIVO E EM CONSORCIAÇÃO COM MILHO

Com o objetivo de identificar os fatores responsáveis pela menor produção de feijão consorciado em relação ao monocultivo, um experimento foi conduzido no CNPMS em Sete Lagoas-MG. Foram avaliadas 10 cultivares de feijão em monocultivo e consorciadas com milho (Cv. Ag-301).

Os resultados médios das diversas características avaliadas para o feijoeiro em monocultivo e em consorciação com o milho estão apresentados nos Quadros 103 e 104.

Observou-se que o número de plantas por metro linear foi semelhante nos dois sistemas de cultivo. Porém, deve ser salientado que no monocultivo o espaçamento entre as linhas foi o de 0,50 m e no consorciado o de 1,00 m; desta forma, a população de plantas de feijão existentes no plantio solteiro foi duas vezes superior à população utilizada no feijão consorciado.

A produção média por planta, independente da cultivar, quando consorciada foi inferior à do monocultivo, sendo esta redução de 31,6% (Quadro 104). Estes resultados evidenciam a competição exercida pelo milho sobre o feijoeiro quando estes cultivos são consorciados.

As estimativas da correlação para a produção por planta obtida em monocultivo e em consorciação, foram de 0,27%, mostrando que o desempenho das cultivares nos dois sistemas não foi coincidente. A presença da interação, observada também neste trabalho, vem corroborar os resultados relatados na literatura, os quais, embora não sejam conclusivos, apontam existir diferenças entre as cultivares quanto à adaptação ao consórcio e monocultivo.

Entre os componentes primários da produção de grãos, o número de vagens por planta foi o mais afetado pela presença do milho (Quadro 104), responsável pela maior parte da redução observada na produção de grãos. Este fato evidencia a alta correlação entre o número de vagens por planta e a produção de grãos.