

FIGURA 72. Temperatura média do solo de dez dias posteriores a dez épocas de semeadura, a 5 cm de profundidade, às 10, 12 e 24 horas. CNPMS, Sete Lagoas, MG, 1992.

DEBULHA MECÂNICA, TRATAMENTO DE SEMENTES E SEMEADURA DE MILHO EM DIVERSAS ÉPOCAS

O processo de debulha mecânica de milho, normalmente provoca danos às sementes, os quais dependendo da velocidade de rotação do cilindro debulhador e da umidade das sementes, podem ser altamente prejudiciais à qualidade fisiológica das mesmas. Este trabalho foi realizado com o objetivo de verificar a influência do tratamento de sementes debulhadas com inseticidas sistêmicos, sob diferentes velocidades de rotação do cilindro debulhador. Utilizou-se a debulhadora Nogueira, Modelo BC-80. Foram utilizadas sementes da cultivar BR 201 (HS-Fêmea), colhidas e despalhadas manualmente e debulhadas sob 400 rpm, 500 rpm, 600 rpm e 700 rpm do cilindro debulhador. A seguir, as sementes foram tratadas com Furadan e Semevin, na dose de 2 1/100 kg de sementes e semeadas em 14.05.91, 16.08.91 e 15.11.91. No campo, foi determinada a velocidade de emergência, com quatro repetições de 100 sementes, semeadas em linhas de 1,0 m. O índice de velocidade de emergência foi determinado pelo somatório das plântulas emergidas diariamente, multiplicado pelo número de dias em cada contagem, a partir do dia da semeadura. Foi determinada ainda a população inicial, com a contagem das plântulas aos 28 dias após a semeadura. O experimento foi instalado em delineamento estatístico do tipo blocos ao acaso, com quatro repetições.

Observando os resultados expressos na Tabela 329, verifica-se que a velocidade de emergência das sementes foi menor na semeadura realizada em 16.08.91, ocorrendo apenas pequenas diferenças entre os tratamentos. De forma geral, observa-se uma ligeira tendência de queda na velocidade de emergência e população inicial ocorrida nas últimas

épocas de semeadura e com as debulhas realizadas com as mais altas rotações do cilindro debulhador. - Cleverson Silveira Borba, Ramiro Vilcla de Andrade, João Tito de Azevedo, Antônio Carlos de Oliveira.

TABELA 329. População inicial e velocidade de emergência de sementes (%) debulhadas manual e mecanicamente, com diferentes velocidades de rotação (rpm) do cilindro debulhador, tratadas com inseticida e semeadas em diversas épocas. CNPMS, Sete Lagoas, MG, 1991.

Sementes debulhadas manual e mecanicamente com e sem inseticida	Época de semeadura					
	14.05.91		16.08.91		-15.11.91	
	Pop.	Veloc. emerg.	Pop.	Veloc. emerg.	Pop.	Veloc. emerg
Manual - s/tratamento	90,3	12,6	87,0	9,08	82,3	14,9
Manual - c/Furadan	82,3	11,4	86,0	9,08	84,5	14,8
Manual - c/Semevin	91,5	12,4	86,0	8,58	84,8	14,1
400 rpm ¹ -s/tratamento	88,3	11,9	84,5	7,78	83,8	15,3
400 rpm-c/l·uradan	89,0	12,2	87,0	8,98	87,8	14,8
400 rpm-c/Semevin	87,5	11,4	88,3	8,88	87,8	14,6
500 rpm-s/tratamento	85,5	11,7	86,5	9,08	82,3	15,1
500 rpm-c/l·uradan	87,3	12,3	84,0	8,48	85,8	14,0
500 rpm-c/Semevin	87,8	11,5	86,0	8,58	86,0	14,2
600 rpm-s/tratamento	85,0	11,6	84,5	8,58	80,8	14,8
600 rpm-c/Furadan	84,8	11,9	84,3	8,68	84,3	14,1
600 rpm-c/Semevin	84,3	11,2	83,0	8,18	82,8	14,3
700 rpm-s/tratamento	81,5	11,2	83,3	8,48	83,5	14,7
700 rpm-c/Furadan	80,8	11,2	79,5	7,98	78,5	13,0
700 rpm-c/Semevin	82,8	11,3	79,3	7,78	84,5	14,1

rpm1 - Rotações por minuto.

PREVISÃO DA QUALIDADE FISIOLÓGICA DE SEMENTES DE SORGO (Sorghum bicolor (L.) Moench)

Um lote de sementes é considerado apto para comercialização somente depois de ter sido testado em laboratório oficial e apresentado porcentagem de germinação e índice de pureza dentro de padrões mínimos estabelecidos por lei, após as operações de colheita, secagem e processamento. No caso de o lote ser condenado por baixa qualidade fisiológica, há grandes prejuízos para o produtor, dado o alto custo das diversas práticas adicionais já realizadas, específicas da produção de sementes. A previsão da qualidade fisiológica da semente ainda no campo permitirá ao produtor, com bastante antecedência, tomar decisões como: determinar o tipo de colheita a ser realizada, tipo de embalagem, tipo de armazenagem e destinar a lavoura para semente ou grão. Este trabalho tem como objetivo fornecer ao produtor de sementes condições de tomar decisões, com base em um modelo de simulação matemática, sobre o destino das lavouras ainda no campo.

A qualidade fisiológica das sementes foi determinada