PROGRAMA DE HÍBRIDOS

AVALIAÇÃO DE HÍBRIDOS INTERPOPULACIONAIS DE MILHO

Nos últimos anos, aumentou o interesse por novos materiais de milho e suas características, para utilização em programas de produção de híbridos. Através do programa II-CA/BID/PROCISUR, foram introduzidas pelo CNPMS algumas populações de grãos flint, para a formação de um composto de milho a ser utilizado por seis países: Brasil, Paraguai, Uruguai, Bolívia, Chile e Argentina.

Assim, no ano agrícola 1989/90, foi efetuado um estudo com o objetivo de se estimar os efeitos das capacidades geral (CGC) e específica de combinação (CEC), dos cruzamentos entre sete populações de milho (Zea mays L.) introduzidas de seis países da América Latina. A avaliação foi feita em Sete Lagoas, MG, num Latossolo, utilizando-se um delineamento em blocos casualizados, com 32 tratamentos e duas repetições. Os tratamentos compreenderam sete populações de grãos flint (Camélia, Composto Resistente à Seca-CRS, Seleção Resistente à Ferrugem-SRF, Composto 1, Estamaprol, Composto Amarelo Duro-CAD e Suwan), 21 híbridos interpopulacionais e quatro testemunhas. Foram tomados dados para os seguintes caracteres: dias para florescimento masculino (DFM), altura de planta (AP) e produção de espigas (PE). A análise da variância mostrou diferença significativa (P<0,01) entre os genótipos para as três características estudadas (Tabela 218). A tabela dialélica de variancia mostrou também alta significância para CGC e CEC para os três caracteres (Tabela 219). A CGC foi mais importante (efeitos aditivos) para DFM e PE do que para a característica AP (Tabela 220). Com relação à CGC, as populações

TABELA 218. Quadrados médios, média geral e dos tratamentos e coeficiente de variação, obtidos da análise de variância, para as três características estudadas. CNPMS, Sete Lagoas, MG, 1989/90.

Causas de	GL	QM				
variação	OL.	Florescimento (dias)	Altura da planta (cm)	Produção (t/ha)		
Tratamentos	31	29,67**	557,86	7,43**		
Genótipos	27	26,51**	418,36	4,95		
Testemunhas	3	4,12	136,96	5,63**		
Cruzam. x Test.	1	191,73**	5.572,36°°	79,79**		
Erro	93	2,80	135,28	0,42		
Média Geral	British and a second	55,30	142,19	7,72		
Média (Genótipos)		54,64	132,66	7,30		
Média (Testemunhas)		59,88	166,88	10,7		
Coeficiente de Varia	ção (%)	3,02	8,18			

Significativo a 1% de probabilidade.

Suwan e SRF apresentaram os maiores valores para as características PE e AF (Tabela 220). As melhores combinações expressas em relação à CEC foram entre os cruzamentos Camélia x Composto 1, Suwan x SRF e Suwan x Composto 1, para PE (Tabela 221). Os resultados mostraram possibilidade da utilização de algumas dessas populações no programa de melhoramento. - Elto Eugenio Gomes e Gama, Paulo Evaristo de Oliveira Guimarães, Ricardo Magnavaca, Sidney Netto Parentoni, Cleso Antônio Patto Pacheco.

TABELA 219. Quadrados médios das capacidades combinatórias referentes às características florescimento, altura da planta e produção de espigas. CNPMS, Sete Lagoas, MG, 1989/90.

Causas de variação CGC CEC		QM					
		Florescimen (dias)			Produção (t/ha) 7,83°° 0,95°°		
		33,44	446,4	15**			
	21	3,65 141,78		78			
	31	1,40	67	7,64	0,21		
Floresci- mento (dias)	Valor percentual	Altura da planta p (cm)	Valor percentual	Produção (t/ha)	Valor percentua		
3,56	(49,38)	42,09	(22,89)	0,85	(47,22)		
2,25	(31,21)	74,14	(40,32)	0,74	(41,11)		
	Florescimento (dias)	6 21 31 Florescimento dias Valor percentual (dias) 3,56 (49,38)	Floresci- mento dias) Floresci- mento percentual planta p (dias) 3,56 (49,38) 42,09	GL Florescimento Altur	GL Florescimento Altura da (dias) planta (cm)		

Significativo a 5% de probabilidade.

Significativo a 1% de probabilidade.

TABELA 220. Estimativas dos efeitos da capacidade geral de combinação (G₂) para florescimento masculino, altura da planta e produção de espigas. CNPMS, Sete Lagoas,MG, 1989/90.

of Applicate Par		G_{i}		
Progenitores	Florescimento (dias)	Altura da planta (cm)	Produção (t/ha)	
Camélia	-3,25	-7,70	-1,15	
SRS	-1,14	-2,98	-0,34	
SRF	0,14	3,70	0,61	
Composto	-0,48	-7,70	-0,49	
Estamaprol	0,25	0,08	-0,46	
CA Duro	2,18	2,30	0,11	
Suwan	2,30	12,30	1,72	
DP (G _i - G _i)	0,56	3,88	0,22	

TABELA 221. Estimativas dos efeitos da capacidade específica de combinações (Sij), e valores médios das populações progenitoras (diagonal) e dos cruzamentos (abaixo da diagonal), para as três características estudadas. CNPMS, Sete Lagoas, MG, 1989/90.

					C	E-t-		
Progenitores		Camé	CRS	SRF	posto	Esta- ma-	CA	Suwar
		ш			1	prol		
41 mm			- 10,				-	
	-1	10.0						9.0
Comélia	F ¹	48,0	2,11	0,33	0,44		-2,22	-1,83
Camélia	AP Prod	130,0 5,35	0,14	10,30	4,24 2,43		-0,03	-10,76 -0,02
	riou	3,33	0,14	-1,03	4,43	-0,21	-0,03	-0,02
	F	52,0	52,0	0,72	-0,67	0,11	0,67	-2,94
CRS	AP	120,0	125,0	15,62	4,51	5,76	2,01	7,01
	Prod	5,94	5,89	0,83	-0,51	0,59	0,48	-0,07
	F	51,5	54,0		-0,34		0,39	-3,22
SRF	AP			135,0		-12,43		2,83
	Prod	6,73	8,40	8,68	-0,65	-0,77	-0,09	1,39
	F	51,0	52,0	53,0	54,5	-1,56	-2,50	2,89
Composto 1	AP	127,5	132,5	130,0	117,5	11,46	1,74	-5,76
	Prod	6,08	5,96	6,77	5,59	0,11	0,40	1,68
	F	52,0	53,5	55,8	52,5	55,5	0,78	-2,33
Estamaprol	AP	135,0	130,0	120,0	142,5	135,0	13,96	6,46
	Prod	5,47	7,09	6,68	6,46	6,15	0,82	-0,09
	F	51,0	56,0	57,0	53,5	57,8	60,0	0,02
CA Duro	AP	120,0	140,0	165,0	135,0	155,0	125,0	11,74
	Prod	6,22	7,54	7,93	7,31	7,76	5,99	1,46
	F	51,5	52,5	53,5	59,0	54,5	59,0	62,5
Suwan	AP	132,5	155,0	157,5	137,5	157,5	165,0	157,5
Br es	Prod	7,84	8,60	11,01	10,20	8,46	10,6	8,55
		DFM				AP		PE
DP (S _{ii} -S _{ik})		1,58				10,97		0,61
10 min		1995.				10		
$DP(S_{ij} - S_k)$		1,48				10,25		0,57

¹F = Dias para florescimento; AP = Altura da planta; PROD = Produção de espigas.

AVALIAÇÃO DE HÍBRIDOS TOPCROSSES DE MILHO

O uso de híbridos simples como testadores pode ser uma maneira rápida de se identificarem híbridos triplos e duplos para produção comercial. Assim, a obtenção de informações a respeito do comportamento de híbridos simples de alta produção, em cruzamento com populações de milho, é importante para o melhorista no planejamento futuro de seu programa de obtenção de híbridos.

Em 1987, foram selecionados 15 híbridos simples de alta produção e foram cruzados com cinco populações melhoradas do programa do CNPMS. No ano agrícola 1988/89, usando um dialelo parcial 15 x 15 e os parentais, 95 materiais foram testados em três locais: Sete Lagoas, MG, Goiânia, GO e Londrina, PR. O experimento foi avaliado usando-se um látice 10 x 10 com duas repetições. A parcela útil foi formada por duas fileiras de 5,0m e o espaçamento foi de 1,0 x 0,20m. A análise estatística do ensaio foi feita usando-se o modelo de Oliveira et al. (1987). Encontrou-se diferença significativa para locais, tratamentos, heterose, heterose média, heterose em cruzamentos e tratamentos x locais (Tabela 222). Na Tabela 223, observa-se que a heterose média foi de 643 kg/ha (8,40%) para os topcrosses. O maior efeito "per se" foi do híbrido simples HS3 (628) e a menor foi o HS1 (-1106). O maior efeito heterótico foi do HS15 (684) e o menor foi do HS11 (-810). O maior efeito "per se" de população foi para a CMS 06 (981) e a menor para CMS 05 (-911). A população CMS 05 apresentou o maior efeito de heterose (471), enquanto a CMS 12 apresentou o menor (-451). O topcross CMS 06 x HS 6 apresentou o maior efeito da heterose específica (797). Foi observada a possibilidade de se selecionar híbridos simples específicos, que poderão ser usados com determinada população para a produção de híbridos ou mesmo, no melhoramento da população. - Elto Eugenio Gomes e Gama, Ricardo Magnavaca, Sidney Netto Parentoni, Cleso Antônio Patto Pacheco, Paulo Evaristo de Oliveira Guimarães, Antônio Carlos de Oliveira.