QUADRO 220. Teores totais de cálcio, magnésio, potássio e fósforo em LVe fase cerrado até a profundidade de 40 cm, após 7 aplicações de biofertilizante. CNPMS, Sete Lagoas, MG. 1985/86.

Tratamento	Elemento				
	K	P	Ca -meq/	Mg	Satura- ção de A m (%)
NPKZn + Calagem	226	42	8,38	2,39	12,6
Testemunha	203	7	3,88	1,16	45,0
Biofertilizante	660	10	9,79	2,35	7,1
NPKZn + Calagem + Biofertilizante	711	29	13,05	3,39	4,0

AVALIAÇÃO E OBTENÇÃO DE GENÓTIPOS DE MILHO PARA FIXAÇÃO BIOLÓGICA DE NITROGÊNIO

Devido à necessidade de aumentar a produção de alimentos e diminuir o consumo de fontes de energia não renováveis na agricultura, fazem-se necessários estudos para a utilização de alternativas que permitam reduzir a dependência dos insumos industrializados.

A fixação biológica pode contribuir significativamente para a nutrição nitrogenada de diferentes espécies de gramíneas e cereais. A associação de plantas com bactérias fixadoras de N₂ constitui uma substituição economicamente importante de energia de combustíveis fósseis, atualmente consumida para a produção de fertilizantes nitrogenados, por energia derivada da fotossíntese. Este trabalho objetiva avaliar, identificar, selecionar e melhorar genótipos de milho que favoreçam a fixação de N₂. Obtiveram-se quatro populações através de quatro ciclos de seleção recorrente fenotípica de irmãos germanos, sob condições de estresse de N no solo. Em outro ensaio foram avaliadas 30 cultivares, incluindo algumas nativas de origens diversas, na presença de 10 kg/ha de N e 100 kg/ha de N. Com base nos teores de N nos grãos, produção de grãos e outras características agronômicas avaliadas, selecionaram-se 12 cultivares, sendo 8 consideradas superiores e 4 inferiores, que apresentaram produções variando de 1.036 a 4.550 kg/ha de grãos (Quadro 221). Os dados indicam a existência de variabilidade genética entre esses materiais, para produção e concentração de N nos grãos, e uma relação negativa entre esses dois parâmetros. Assume-se que as plantas mais eficientes em fixar N₂ estão entre aquelas mais produtivas e/ou capazes de acumular maior quantidade de nitrogênio, quando cultivadas em solo deficiente em N. Paralelamente, procurou-se selecionar genótipos com diferentes graus de resposta ao nível elevado de nitrogênio aplicado, de acordo com a produção relativa. Entre as cultivares selecionadas como superiores, cinco foram responsivas ao N, e três não responsivas e as inferiores foram responsivas ao nitrogênio aplicado.

Os materiais genéticos selecionados ou melhorados sob estresse de N no solo serão avaliados quanto à capacidade de fixar N₂, utilizando a técnica de ¹⁵N. Os resultados fornecerão subsídios para definir outros parâmetros de seleção visando a fixação biológica de nitrogênio atmosférico. - Ivanildo E. Marriel, Elto E.G. Gama, Robert Boddey, Gonçalo E. França, Ronaldo O. Feldmann

QUADRO 221. Produção de grãos, teor de N nos grãos e resposta relativa de 12 cultivares de milho selecionadas em solo deficiente em N, com 10 kg N/ha aplicados no plantio. CNPMS, Sete Lagoas, MG. 1985/86.

Cultivares	Produção de grãos (kg/ha)	Teor N nos grãos (mg N/g grãos)	Produção relativa ¹ (%)
HS 7 x 14	4.550	13,8	85
CMS 22	3.728	14,7	109
Cogollero	3.223	13,3	92
Composto Jaíba III	3.148	14,6	93
CMS 01	2.688	13,7	74
Cateto Sete Lagoas	2.500	18,8	76
Pontinha São Simão	2.075	16,8	92
Azteca	2.050	17,5	72
Palha Roxa Cravo Morro da	1.736	16,7	155
Fumaça	1.110	16,2	74
Kalahari Blitz	1.078	13,9	87
Caigang Composto	1.036	16,4	76

¹A produção observada na presença de 100 kg N/ha foi considerada igual a 100.

COMPOSIÇÃO QUÍMICA E PRODUÇÃO DE MILHO EM SOLO DE CERRADO TRATADO COM BIOFERTILIZANTE

A utilização adequada de resíduos orgânicos tem-se mostrado promissora para aumentar a produtividade de diversas culturas, contribuindo para aumentar a oferta de grãos.

Neste trabalho, utilizaram-se alguns tratamentos com biofertilizante para avaliá-lo como fonte de nutrientes para o milho, em um Latossolo Vermelho-Escuro, fase cerrado. Foram testados os seguintes tratamentos: completo (N, P, K, Zn e calagem); completo sem N; completo sem P; completo sem K; completo sem NP; completo sem NK; completo sem PK, sendo esses na presença de biofertilizantes; testemunha sem adubo e sem biofertilizante; completo sem biofertilizante. Após 4 aplicações de biofertilizante, 15 t/ha/ano de matéria seca, avaliaram-se o rendimento de matéria seca, teor e concentração de macro (N, P, K, CA e Mg) e micronutrientes (Zn, Fe, Cu e Mn) na parte aérea de milho, além de produção de grãos.

Em relação ao tratamento completo, a omissão dos nutrientes não resultou em redução nos seus teores na parte aérea da planta (Quadro 222), indicando fornecimento adequado dos nutrientes pelo resíduo. Resultados similares fo-