por outro lado, por causa da dificuldade de se manterem grandes unidades armazenadoras, construídas de outros materiais, hermeticamente fechadas. Existe ainda o problema adicional das flutuações na temperatura ambiente, que podem causar migração de umidade, com sérios prejuízos para a qualidade dos grãos armazenados.

Entretanto, para o armazenamento de pequenas quantidades de grãos, de 40 kg a 150 kg, o armazenamento herméticos não subterrâneo apresenta-se como alternativa viável. Se os grãos forem destinados ao consumo, seu teor de umidade pode ser de até 13% e para sementes o mesmo não deve ultrapassar 11%. Nestas condições, para um tempo de armazenamento de 8 meses, a uma

temperatura média de 25.°C, há resultados de pesquisa mostrando a manutenção da qualidade dos grãos; inclusive não havendo queda significativa no poder germinativo e no vigor das sementes.

O armazenamento hermético não subterrâneo de pequenas quantidades de grãos pode ser feito de duas maneiras.

a. Em tambores metálicos

- Usar tambores metálicos com capacidade de 200 l, dos utilizados para o armazenamento de óleo combustível.
- 2. Proceder a limpeza interna do tambor.
- 3. Encher completamente de grãos o tambor, usando um funil para facilitar a operação.

4. Fechar a estrutura com a

tampa apropriada e parafiná-la para perfeita vedação.

5. Manter o tambor em local coberto, fresco, ao abrigo do sol e da chiva

b. Em sacos plásticos

1. Usar sacos de adubos vazios, previamente lavados e secos.

2. Encher um saco com cerca de 40 kg de grãos, fechar a boca do mesmo com uma dobra bem feita, colando com cola tipo "Brascoplast" e reforçando com fita adesiva (crepe).

3. Colocar o saco de milho já cheio fechado dentro de outro vazio e proceder o fechamento do segundo da mesma maneira que foi

feita no primeiro.

4. Guardar os sacos de milho em local coberto, fora do alcance de ratos.

MAN, E.C. 1991

Colheita mecânica do milho

Texto de EVANDRO CHARTUNI MANTOVANI, da Embrapa

1. Introdução

A colheita mecânica de milho é uma prática que começa a apresentar importância para os agricultores brasileiros. Geralmente. o agricultor só se preocupa com a colheita mecânica do milho guando a cultura já está no final do ciclo. É bom lembrar, entretanto, que o processo de colheita mecânica se inicia no momento em que está sendo feito o planejamento para a instalação da cultura no campo. É, portanto, uma das fases mais complexas do processo de produção e o seu sucesso depende de um bom planejamento.

Existem três sistemas distintos de colheita mecânica normalmente usados pelos produtores: 1) somente colheita de milho; 2) colheita de cultura de inverno e depois milho; 3) colheita de milho e outros grãos no verão, e, no inverno, trigo.

No primeiro caso, o manejo da cultura torna-se mais fácil, uma vez que as máquinas de colheita serão utilizadas somente para o milho e o fator importante é planeiar o sistema observando os seguintes itens: teor de umidade do grão, quantidade a colher, escoamento de safra de campo, limpeza, secagem e armazenamento. Experiências passadas mostram que a secagem natural, ou seja, deixar que a secagem de todo o milho ocorra no pé, até que os grãos atinjam baixos teores de umidade, não tem sido uma boa prática. A infestação de plantas daninhas aumenta muito. influindo no rendimento da colhedora que necessita de paradas constantes para se proceder ao desembuchamento, além de haver acúmulo de impurezas no milho, sobrecarregando o mecanismo de limpeza da máquina.

No segundo caso, a mesma

máquina vai ser utilizada para colheita de mais de uma cultura e há prioridades de colheita, como é o caso da soja e/ou do arroz. Nesse caso, o milho é colhido após as outras culturas e, por isso, numa faixa de umidade bem baixa. Nestas condições, a secagem artificial fica praticamente excluída do sistema, e o escoamento de safra do campo, limpeza e armazenamento são os fatores mais importantes a serem observados no planejamento; do contrário, todo o sistema perde em eficiência, porque o processo é interrompido em uma dessas fases.

Finalmente, o terceiro sistema apresenta um cronograma de atividade bastante apertado, obrigando o produtor a um esforço muito grande para poder dar conta de duas safras num mesmo ano. Neste caso, o produtor terá que redobrar seus cuidados com o planejamento do sistema, porque a

colheita é uma das fases de maior importância, acompanhada do escoamento de safra do campo, recepção, limpeza, secagem e armazenamento. A comercialização pode afetar o sistema, se não forem liberados silos e/ou armazéns para as outras safras que virão.

2. Planejamento da colheita A colheita pode ser planejada a partir das colhedoras de que o produtor dispõe ou, em caso inverso, a partir da área plantada.

Em ambos os casos é necessário calcular a capacidade de colheita da máquina ou então calcular quantos hectares terão que ser colhidos por hora. O cálculo para se conhecer o rendimento de um equipamento pode ser feito pela seguinte fórmula:

Capacidade efetiva (ha/h) = $\frac{V (m/h) \times L (m) \times f}{10000}$

onde,

V = Velocidade de deslocamento da máquina, m/h

L = Largura de trabalho, m F = Fator de campo, %

Se considerarmos que uma máquina agrícola nunca terá um trabalho contínuo, devido às paralisações para desembuchar, manobrar, abastecer, conservar etc., é necessário considerar estes fatores, englobados no fator de campo (f), que significa a eficiência de trabalho da máquina.

No caso de colheita mecânica, a literatura tem considerado como valores médios aceitáveis, de 70 a 80%, ou seja, 20 a 30% do tempo é perdido. A colheita deve ser realizada numa faixa de velocidade de 4 a 6 Km/h. E, finalmente, a largura de trabalho que se pretende realizar (uma a cinco linhas na plataforma de milho ou uma largura de plataforma de arroz, soja, trigo, etc, de dois a cinco metros).

O planejamento deve levar em conta os seguintes itens:

- · área plantada;
- número de dias para colheita;
- · número de colhedoras;
- distância entre o campo e o ecador:
 - número de carretas graneleiras;
 - quantas horas de colheita/dia;
 - · tamanho do secador;
 - · tamanho do silo armazenador.

Os dados necessários ao planejamento deste sistema são obtidos em tabelas e através de cálculos que se baseiam nas informações de campo onde será instalada a cultura, e em dados técnicos dos equipamentos disponíveis.

Para uma melhor eficiência durante a colheita mecânica do milho, a divisão dos campos deve ser feita de modo a facilitar a movimentação da colhedora e o transporte dos grãos colhidos. Devese executar um bom preparo de solo, a fim de que a máquina possa desenvolver a velocidade mais constante possível, em torno da velocidade programada para a colheita e, portanto, econômica. A escolha da cultivar a ser plantada também é um ponto importante, havendo estreita relação entre o porte da planta e a perda de espigas na colheita. As cultivares de milho de porte alto são geralmente mais susceptíveis ao acabamento e quebramento do colmo, gerando uma perda bastante significativa de espigas. As cultivares de porte médio ou baixo são as mais indicadas porque têm maior resistência ao acamamento e quebramento. Além disso, o plantio deve ser efetuado levando-se em conta: o número de linhas de colheita e espaçamento entre bocas de colheitadeira; número de linhas do equipamento de plantio e o espaçamento entre linhas de plantio. Exemplo: se a colhedora tem quatro bocas e o espaçamento entre elas é de 90 cm, o plantio deve ser feito com uma plantadora de quatro linhas ou múltiplo e o espaçamento entre linhas de plantio deve ser também de 90 cm.

Este procedimento contribuíra muito para a facilidade de operação do equipamento de colheita e para a redução das perdas.

A colheita pode começar a partir da maturação fisiológica dos grãos, fase esta que ocorre quando, no ponto de junção dos grãos com o sabugo, forma-se um ponto preto. Quando mais de 50% dos grãos amostrados encontram-se na maturação fisiológica, o milho é considerado maduro. Se o grão foi colhido neste período de 15 a 20 dias após a maturação fisiológica, terá que passar por uma secagem. No caso de ele ser colhido com

baixo teor de umidade (13-15%) será dispensável a secagem, mas a eficiência da colheita deverá cair, devido a problemas de infestação de plantas daninhas, que já foi mencionado. Os dados de teor de umidade dos grãos, em relação ao número de dias após a maturação fisiológica, são variáveis de acordo com as condições climáticas da região e do ano; portanto, há necessidade de observação e adaptação. A partir dessa época, é muito importante que a colhedora já tenha passado por todos os cuidados de manutenção e reparos, deixando para o início da operação apenas a colocação do cilindro apropriado para a colheita de milho (cilindro de barra) e as regulagens finais de campo (distância entre cilindro e côncavo, rotação do cilindro, ajuste da peneira inferior e superior, rotação do ventilador).

3. Regulagem da colhedora

Há quatro tipos de perdas que devem ser consideradas na regulagem:

1. perda da espiga empalhada;

2. perda de grãos atrás da

máquina;

3. perda de grãos nos sabugos, caídos atrás da máquina, ocasionada pelo cilindro;

4. perda de grãos na frente da plataforma de colheita, ocasionada

pelo rolo espigador.

A perda de espigas empalhadas pode ser controlada ajustando-se as chapas que retiram as espigas da planta, de maneira a permitir uma fácil passagem do colmo sem deixar que as espigas caiam durante a passagem na plataforma. Outra maneira de regular é com o controle da velocidade de deslocamento da colhedora: deve ser diminuída em casos de alta produtividade ou no caso de haver muitas plantas acamadas e quebradas. É difícil tentar controlar a perda total de espigas, uma vez que uma percentagem de espigas já se encontra no solo antes de começar a colheita. Este controle está mais ligado ao melhoramento de plantas, no sentido de encontrar cultivares mais resistentes ao quebramento.

A perda de grãos na frente da máquina é ocasionada pela má regulagem da distância entre as chapas que conduzem o colmo dentro da plataforma, por onde as espigas são destacadas, pela ação do rolo espigador. Quando esta perda é grande, a distância entre as chapas

16 - GADO HOLANDÉS

deve estar maior do que a adequada, permitindo a passagem de espigas para o rolo espigador, que efetua a debulha.

A perda de grãos no sabugo é relacionada com a regulagem do côncavo. As velocidades de rotação do cilindro variam de 400 a 900 rpm para o caso do milho e a regulagem da distância entre o cilindro e o côncavo deve seguir a seguinte. orientação: na parte frontal, é feita mais ou menos igual ao diâmetro médio das espigas de cada cultivar e na parte posterior, em função do diâmetro médio do sabugo. A partir deste ponto deve-se observar a ocorrência ou não de perda de grãos. Caso afirmativo, é necessário diminuir um pouco a distância entre o cilindro e o côncavo, mas, tendose o cuidado de observar que o sabugo não saia quebrado atrás da máquina e que o grão não saia

danificado no tanque. A rotação do cilindro é ajustada de acordo com o teor de umidade do grão. A medida que o grão vai perdendo umidade, é necessário diminuir a rotação do cilindro para evitar danificações excessivas pois os grãos vão perdendo a sua maleabilidade com o abaixamento do teor de umidade, ficando mais susceptíveis a danos. A combinação destes dois ajustes é verificada no tanque e atrás da máquina, lembrando que nunca as regulagens devem ser feitas simultaneamente, pois isto dificulta chegar a um bom ajuste com rapidez.

A perda de grãos soltos atrás da máquina está relacionada com a regulagem do saca-palha e do sistema de limpeza do grão (ventilador, peneira superior e peneira inferior). A velocidade do saca-palha deve ser ajustada

primeiramente seguindo orientação do fabricante e, se necessário, que se façam reajustes a fim de que grãosque ainda se encontram junto com a palha tenham tempo suficiente para cair nas peneiras e que o material inerte seja eliminado. Os grãos terão que sair no tanque da colheitadeira limpos e não devem ser arremessados atrás da máquina. A melhor maneira para se obter a regulagem de limpeza, é seguir as recomendações do catálogo de uso da máquina e, no campo, ajustar alternadamente a velocidade do ventilador e a abertura das peneiras.

Cada fabricante de colheitadeira apresenta, no seu catálogo de uso da máquina, sugestões de regulagem que devem ser seguidas e adaptadas pelo usuário para cada condição específica, lembrando-se que o nível aceitável de perdas nunca deve exceder a 7%.

Controle de pragas no milho armazenado

Texto de JAMILTON P. SANTOS e IVAN CRUŹ, da Embrapa

1. Pragas principais

1.1. Caruncho. Os carunchos são pequenos besouros negros, medindo 3-5 mm e com o bico projetando-se da cabeça. A fêmea consegue viver de 4 a 5 meses, colocando, em média, 180 ovos neste período. Os danos no milho são causados pelos adultos e pelas formas jovens (larvas) que se desenvolvem no interior dos grãos, emergindo quando se transformam em adulto. O período para completar o ciclo de ovo a adulto é, geralmente, de 30-35 dias.

1.2. *Traça*. A traça é uma mariposa de 5-7 mm de

comprimento e coloração amarelopalha. A fêmea pode pôr cerca de 400 ovos durante sua vida, que varia de 5-10 dias. Dos ovos nascem pequenas larvas que imediatamente penetram no grão, passando a viver e alimentar-se no seu interior, destruindo o embrião e o endosperma. Seu ciclo de ovo a adulto é igual ao do caruncho, de 30-35 dias. É uma praga que ataca os grãos da superfície dos depósitos a granel, mas em paióis ela pode aprofundar-se.

1.3. Roedores. Os roedores que atacam o milho são a ratazana, o rato comum e o camundongo. Estas pragas podem destruir até 10 vezes

mais alimento do que precisam para se alimentarem. Além desses prejuízos, esses roedores podem transmitir ao homem cerca de 35 doenças. A leptospirose, doença que provoca o aborto, comumente diagnosticada em rebanhos de suínos, encontra na urina dos ratos seu mais frequente transmissor.

2. Controle de insetos

Para evitar prejuízos ocasionados por carunchos e traças, no milho armazenado na fazenda, as seguintes orientações devem ser seguidas:

2.1. Antes do armazenamento

a. Limpeza e desinfestação das estruturas armazenadoras Antes de receber o produto da nova