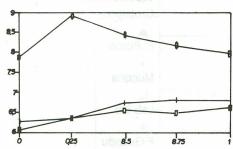


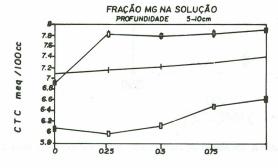
FIGURA 87. Variação do ciclo de algumas leguminosas cultivadas a 20^o de Latitude sul, em função do comprimento do dia no período de floração. CNPMS, Sete Lagoas, MG, 1994.

ROTAÇÃO DE CULTURAS E PRODUTIVILADE DE MILHO EM SOLO SOB VEGETAÇÃO DE CERRADO

Em um LEd, fase cerrado, da região de Sete Lagoas, MG, foi conduzido um ensaio com o objetivo de verificar o efeito da mucuna solteira e intercalar ao milho e o da rotação soja e milho sobre a produtividade dessas culturas.

Para verificar o efeito da rotação da cultura na CTC do solo nos diferentes sistemas estudados, amostras de solo foram retiradas, em profundidades variáveis, nos tratamentos milho contínuo, milho após soja e soja contínua. Essas amostras foram tratadas com solução contendo frações molares de cálcio e de magnésio (0,02M) até que toda a superfície trocadora fosse ocupada apenas com estes íons. Posteriormente, os íons adsorvidos foram extraídos com KNO₃ 0,2M.


Na Tabela 395, estão apresentados os totais de produção de milho e de soja nos diferentes manejos de cultura, em quatro anos de ensaio. Através desses totais, verificou-se que o milho após mucuna apresentou menor produção de grãos do que o tratamento com milho contínuo. Esse fato é explicado pela perda de um ano agrícola na produção do milho.


O tratamento com três anos de milho contínuo e um de milho cultivado com mucuna intercalar foi semelhante ao total produzido com quatro anos de milho contínuo. Portanto, nas condições desse ensaio, sem computar os possíveis efeitos benéficos que o plantio da leguminosa causa ao solo, não houve vantagens na produtividade do

milho cultivado após milho, com mucuna intercalar. Todavia, quando se envolve a cultura da soja, é possível que haja, economicamente, um sistema mais viável. Para facilitar a comparação, as produções de soja foram equiparadas às produções de milho, usando-se relações preço/soja/milho variáveis ao redor de 1,58, média obtida em dez anos (1978-1988), na região do Triângulo Mineiro (Tabela 396). Tendo-se como referência que 8 kg de milho são necessários para adquirir e aplicar 1 Kg de nitrogênio, a aplicação de 40 kg de N traduz a necessidade de 320 kg de milho. Este valor, sendo acrescido aos valores obtidos com o sistema quatro anos de soja e comparado com o sistema três anos de soja e um de milho, demonstra ser este último sistema o de maior viabilidade econômica. Seguindo-se o mesmo raciocínio para o sistema quatro anos de milho, verifica-se que, a partir da relação preço soja/preço milho = 1,80, é mais vantajoso plantar quatro anos de soja. Não se computou, no entanto, o custo de transporte.

Através da Figura 88, verifica-se que a CTC, calculada pela forma de íons Ca e Mg, do sistema milho após soja é menor quando comparada com a do sistema soja contínua. Portanto, ao se cultivar o milho em área após soja, há decréscimo das cargas responsáveis pela retenção iônica. É conveniente observar a variabilidade da CTC, em profundidade, de acordo com o manejo cultural, como já demonstrado no relatório Técnico Anual do CNPMS, publicado em 1991. - Carlos Alberto Vasconcellos, Andréa Xavier Costa, Gonçalo Evangelista de França.

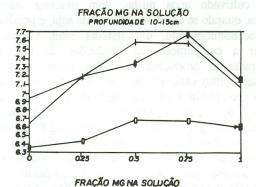


FIGURA 88. Variação dos teores de cálcio e de magnésio, em solo Led, submetido a diferentes manejos. CNPMS, Sete Lagoas, MG, 1992.

MILHO APÓS SOJA + MILHO CONTÍNUO SOJA CONTÍNUA

TABELA 395. Produções totais de milho e de soja obtidos em diferentes manejos de culturas, durante quatro anos. CNPMS, Sete Lagoas, MG, 1989

Sistemas Change	Produção Total (Kg. ha - 1)	
	Milho	Soja
Três anos de soja		
Um ano de milho	3.943	4.438
Três anos de soja		
Um ano de milho com mucuna intercalar	3.988	4.603
Quatro anos de soja		6.025
Três anos de milho e um de mucuna solteira	9.660	
Três anos de milho contínuo e um com mucuna		
intercalar	12.124	
Ouatro anos de milho	12.130	

TABELA 396. Produções totais de milho(Kg) obtidas em diferentes manejos de culturas durante quatro anos, tendo-se transformado as produções de soja em produções de milho através de diversas relações de preços da soja e do milho. CNPMS, Sete Lagoas, MG, 1994.

Sistemas	Produção total de milho				
	Relações	Preço	Soja/ Preço	Milho	
	1,10	1,50	1,90	2.30	
Três anos de soja e					
um de milho	8.847	10.662	12.397	14.172	
Três anos de soja e					
um de mucuna	9.253	10.892	12.733	14.754	
intercalar					
Quatro anos de soja	6.628	9.038	11.448	13.858	
Quatro anos de					
milho	12.130				

ALTERAÇÕES FÍSICO-QUÍMICA DE SOLOS CULTIVADOS COM SUCESSÃO SOJA - SORGO

Para avaliar os efeitos da sucessão de culturas entre o sorgo e a soja sobre as características físicoquímicas do solo, efetuou-se a amostragem de um LEm (latossolo vermelho - escuro textura média), da região de Guaíra, São Paulo. Das propriedades visitadas, amostraram-se quinze áreas com diferentes manejos de solo, cujo pH variou de 4,6 (solo nativo) a 7,7. Observou-se que os produtores aplicavam calcário em nível excessivo, sendo prática comum a aplicação de 2t/ha, após o cultivo de sorgo, seguindo-se a cultura da soja. Aproximadamente 47% das amostras de solo apresentaram pH igual ou superior a 6,5. indicativo de aumento da argila dispersa em água com o pH. Apesar desse efeito negativo na dispersão da argila, a Figura 89 demonstra a correlação positiva entre a CTC efetiva/ 100g de argila e o pH(r=0,95). Por outro lado, a CTC pH 7/ 100g de argila não seguiu um padrão específico com o pH (r=0,47).

A análise de variância dos resultados obtidos para o equilíbrio Ca/Mg permitiu isolar o efeito apenas do solo in natura, ou seja, o equilíbrio entre o cálcio e o magnésio somente foi alterado quando em solo cultivado. A energia livre de Gibbs foi calculada pela fórmula: $\Delta G_0 = -$ RT ln K , onde R é a constante dos gases, T a temperatura absoluta e K a constante de equilíbrio da equação:

Os valores da energia livre, quando positivos, sugerem que a equação se processa, em termos médios, da direita para a esquerda, ou seja, com adsorção preferencial de cálcio. Quando os valores são negativos, sugerem que o sistema é espontâneo, ocorrendo a formação de Mg-arg a partir da Ca-arg.