II. ADUBAÇÃO E CALAGEM

1. Condições de solo

O milho pode ser cultivado em diferentes tipos de solo. Entretanto os rendimentos serão mais elevados nos solos mais profundos, férteis, com boa drenagem e aeração.

Com relação a acidez o milho desenvolve melhor em so los fracamente ácidos ou neutros. Entretanto, quando o pH aumenta acima de 6,0 ocorre redução na disponibilidade de micronutrientes, (exceto o molibdênio que aumenta sua disponibilidade com a elevação do pH).

O cultivo de milho, após o plantio de soja tem-se mostrado bastante eficiente, conforme resultados já alcan çados pela pesquisa.

Ensaios realizados pelo CNPMS/EMBRAPA têm mostrado que o cultivo de milho após a soja proporcionou aumento de produção em torno de 30%, quando comparado com o cultivo de milho contínuo.

Em trabalho realizado pela EPAMIG em Minas e em solos sob vegetação de cerrado, cultivados durante cinco anos com soja, obteve-se produções de 4,0 a 5,0 t/ha de grãos de milho, com o aproveitamento do efeito residual da calagem e da adubação fosfatada aplicada na cultura da soja.

Este aproveitamento de nutrientes, principalmente ni

trogênio e fosforo deixados no solo pela soja, após a colheita, é um dos fatores que favorece a rotação soja-milho e a redução dos custos de produção.

2. Analise do solo

A planta necessita, para seu crescimento e desenvol vimento, de 16 elementos essenciais, assim classificados:

- . elementos provenientes do ar e água: carbono, oxigênio e hidrogênio.
- elementos provenientes do solo: macronutrientes
 (elementos exigidos em maiores quantidades): nitrogênio,
 fósforo, potássio, cálcio, magnésio e enxofre.
- . micronutrientes (elementos exigidos em menores quantidades): boro, cobre, cloro, ferro, manganês, molibdênio e zinco.

É através da análise do solo que se procura avaliar a necessidade de adubação para principais culturas. A aná lise fornece condições para se avaliar as quantidades eco nômicas de calcário (consequentemente, de cálcio e magnésio), de fosforo e de potássio que devem ser aplicadas. Uma série de cuidados especiais deverão ser observados na amos tragem do solo a ser analisado: nº de amostras simples, tamanho de área amostrada, cor do solo, declividade, vege tação, drenagem, etc.

Após as adubações convencionais no sulco de plantio, há o aumento da heterogeneidade do terreno. Nestas condições para minimizar o efeito da concentração dos adubos no sulco de plantio, as amostras devem ser tomadas após a aração e gradeação do terreno.

A importância de uma boa amostragem refletirá no con sumo adequado de fertilizantes e corretivos. Sugere-se que os produtores procurem os agentes da EMATER para receberem informações quanto aos cuidados da retirada de amostras de solo para análise química.

2.1. Níveis de fertilidade

a. pH do solo

A determinação do pH mede a atividade do hidrogênio e constitui um indicativo das características do solo.

TABELA 1. Classes de pH em agua

Classificação	Nīveis
Acidez elevada	< 5,0
Acidez media	5,0 - 5,9
Acidez fraca	6,0 - 6,9
Neutra	7,0
Alcadididade fraca	7,1 - 7,8
Alcahihidade alta	> 7,8

b. Alumínio trocavel

O alumínio é prejudicial a maioria das culturas, pois inibe o desenvolvimento do sistema radicular impedin do a absorção e translocação de nutrientes.

Solos com percentagem de saturação de alumínio inferior a 20%, provavelmente não apresentarão efeito nocivo com relação a implantação da cultura do milho.

c. Cálcio e magnésio trocáveis

A relação Ca⁺⁺. Mg⁺⁺ ideal para a maioria das culturas está entre 3:1 a 5:1. Quando existe desbalænceamento nesta relação e não há necessidade de calagem, recomenda-se aplicar adubos que tenham magnésio na sua formulação.

Os níveis críticos para Ca⁺⁺, Mg⁺⁺ Ca⁺⁺ Mg⁺⁺ no solo são apresentadas na Tabela 2.

TABELA 2. Níveis críticos de Ca⁺⁺, Mg⁺⁺ e Ca⁺⁺, Mg⁺⁺ no solo.

Classificação	n chresion de setle!	eq. mg/100 cc
	Calcio + Magnésio	
Baixo		< 2,00
Medio		2,1 a 5,0
Alto		> 5,0
	Cálcio	
Baixo		< 1,5
Médio		1,6 - 4,0
Alto		> 4,0
	Magnésio	
Baixo		< 0,5
Medio		0,5 - 1,0
Alto	2.0	> 1,0

d. Fosforo e potássio

Nas análises de rotina, tanto o fósforo como o potássio são determinados pelo método de Carolina do Norte-Tem-se adotado os valores para interpretação constante na Tabela 3 e 4.

TABELA 3. Níveis críticos de potássio no solo

Classificação	Nivel de K ppm
Baixo	60
Medio	60 - 120
Alto	120

TABELA 4. Níveis críticos de fosforo no solo

Classificação	Textura media e argilosa	Textura argilosa
Baixo	10	6
Medio	10 - 20	6 - 10
Alto	20	6

e. Matéria orgânica

Os teores de matéria orgânica são divididas em três classes (Tabela 5)

TABELA 5. Classes de teor de matéria orgânica no solo

Classificação	Matéria orgânica %
Baixo	1,50
Média	1,50 - 3,0
Alto	3,0

3. Nutrientes essenciais

3.1. Nitrogenio

O nitrogênio é adsorvido pelas plantas na forma nítrica (NO₃) e amoniacal (NH₄⁺); entretanto, é a forma nítrica a mais adsorvida pelos vegetais.

O nitrogênio é pouco retido pelos coloides do solo e, em virtude disto, facilmente lixiviado pelas águas de chuvas. Este fato constitui a principal razão para se recomendar a adubação parcelada de nitrogênio, de modo a ocorrer o seu melhor aproveitamento pelas plantas. Sua perda no solo ocorre, ainda, pela remoção das colheitas, erosão e volatilização.

O nitrogênio na cultura do milho é absorvido em to do seu ciclo vegetativo, entretanto, sua absorção nos primeiros 30 dias é pequena, aumentando de maneira considerável a partir deste ponto. Atinge taxa superior a 4,5 kg de N/ha/dia durante a época do pendoamento e embone-

camento. Assim sendo, o sucesso da adubação nitrogenada em cobertura, na cultura do milho consiste em suprir as plantas em quantidades adequadas no seu período crítico, ou seja, entre os 40-50 dias apos a germinação das sementes.

Normalmente, tem-se recomendado a aplicação de 60 kg de N/ha, sendo 1/3 no plantio e 2/3 em cobertura.

Os fertilizantes nitrogenados mais encontrados no mercado brasileiro são:

Nitrato de amonio: apresenta com cerca de 20% de N, sendo a metade na forma nítrica e a outra metade na forma amoniacal. Tem a vantagem de apresentar reação básica, evitando a acidificação do solo pela amonia.

Sulfato de amônio: constitui a fonte de fertilizan te nitrogenado mais utilizada em nosso país. Contém 20% de nitrogênio e 24% de enxofre. Este adubo é acidificante do solo, razão pela qua¹ bastante atenção deve ser da da neste aspecto.

Ureia: esta fonte apresenta 42-45% de nitrogênio.

Salitre do Chile: encerra-se em sua composição 16% de nitrogênio na forma de nitrato.

As respostas da cultura de milho a estas diferentes fontes têm sido bastante semelhantes.

3.2. Fosforo

Em contraste com o nitrogênio, as formas de fosforo no solo são bastante estáveis, não se perdendo por volatização ou lixiviação. Esta alta estabilidade está diretamente relacionada com a alta capacidade de fixação de fosfatos por constituintes do solo. Sabe-se que não mais de 20% do fosforo aplicado ao solo são prontamente aproveitados pelos vegetais, pois grande parte do fosforo aplicado é fixado em formas menos solúveis.

Dentre os fertilizantes fosfatados mais encontrados no mercado brasileiro estão:

Termofosfatos: O produto contém 19-20% de P₂0₅ total e ainda possui cálcio, magnésio e micronutrientes na sua composição.

Superfosfato triplo: Difere do superfosfato simples por ser constituído principalmente de fosfatos monocálcicos e com teores mais elevados de P_2O_5 solúvel em água. Possui 42-48% de P_2O_5 solúvel, 14% de Ca e 2% de S.

3.3. Potassio

É absorvido na forma iônica de K⁺. O suprimento ade quado de potássio está relacionado com a resistência da planta a determinadas doenças, "stress" de umidade, baixa temperatura, acamamento e obtenção de produtos com

melhor qualidade.

Os fertilizantes potássicos mais usuais são:

Cloreto de potássio: possui 60-62% de K_2^0 . É a forma mais usual dos fertilizantes potássicos.

Sulfato de potassio: possui 50-53% de K₂0.

Sulfato de potássio e magnésio: tem em sua compos \underline{i} ção 22% de K $_2$ 0 e 25% de Mg S0 $_4$.

Nitrato de potássio: encerra em sua composição 44% de $\mathrm{K}_2\mathrm{O}$ e 13% de N.

3.4. Calcio

O cálcio é elemento de ocorrência generalizada na natureza. É absorvido pelas plantas na forma iônica Ca²⁺ e pode provir da solução do solo ou do complexo sortivo, pelo processo de troca. A manutenção de equilíbrio entre os teores de cálcio e magnésio no solo é bastante importante. Alguns trabalhos têm mostrado que a relação ideal está entre 3/1 e 5/1.

3.5. Magnésio

O magnésio é sempre absorvido pelas plantas na for ma iônica (Mg²⁺). Na agricultura, o magnésio tem como fon tes principais o calcário dolomítico, dolomita (21,7MgO),

sulfato de magnésio comercial (16% de MgO), nitrato de magnésio (15,5% de MgO) e magnesita (26% de MgO).

Alguns adubos comumente utilizados apresentam teores variáveis de magnésio, dentre eles citam-se: nitrocálcio (8% de MgO); superfosfato simples (0,5% MgO); escória de Thomas (2-6% MgO); termofosfato (18% de MgO).

3.6. Enxofre

O enxofre é absorvido na forma de SO_4^{-2} , podendo também ser absorvido em pequenas proporções na forma de SO_2 (absorção foliar) e na forma de aminoácidos (cisteína, por exemplo).

O enxofre pode ser aplicado diretamente no solo na forma de enxofre elementar, sulfato de cálcio (gesso) (CaSO₄.2H₂O) ou como componente de outros fertilizantes. As perdas do enxofre se verificam, principalmente, por lixiviação. Alguns trabalhos têm evidenciado perdas de até 80% do enxofre adicionado como fertilizante. Trabalhos realizados em São Paulo mostraram que, em solos de ficientes em S, a aplicação de 40 kg de enxofre na forma de sulfato de cálcio, na cultura do milho, proporcio nou aumento significativo da produção.

3.7. Micronutrientes

O zinco é sem dúvida o micronutriente cuja deficiên cia é bastante comum em lavouras de milho.

Recomenda-se aplicar 9 kg de Zn/ha quando a adubação é feita a lanço. Essa quantidade tem sido suficiente para quatro colheitas sucessivas.

Para as aplicações anuais, no sulco de plantio, têm -se recomendado 2 kg de Zn/ha, também na forma de sulfa to de zinco (22,7% Zn).

Quando a deficiência aparece com a cultura em desen volvimento, recomendam-se pulverizações (400 1/ha) com a solução de 0,5% de sulfato de zinco, neutralizada com 0,25% de cal.

4. Calagem

4.1. Necessidades da calagem

Com a aplicação do calcário objetiva-se, basicamen te, a redução da solubilidade de certos elementos tóxicos (alumínio e/ou manganês) que, em determinadas concentrações, podem limitar a produção.

Apesar da existência de outros materiais, o corretivo mais usado para eliminar a presença dos elementos tóxi
cos é o calcário calcítico ou o dolomítico. Além de neutra
lizar o alumínio, o calcário fornece o cálcio e o magnésio,
que são elementos essenciais à nutrição mineral do milho.

A necessidade de calagem (NC) é calculada pela formula: $NC = 2 \times A1^{+3}$ (eq.mg/100cc) cujo resultado fornece a quantidade de calcário (PRNT 100%) a ser aplicado em t/ha. Em Minas Gerais, além do fator 2, utiliza-

se o conceito de completar os teores de Ca⁺² + Mg² do solo para 2 eq.mg/100 cc. Assim, a fórmula utilizada para o cálculo é:

Necessidade de calagem $(t/ha) = 2 \times A1 + [2 - (Ca + Mg)]$

4.2. Escolha do corretivo

A escolha de um corretivo deve ser orientadanos se guintes aspectos:

- . poder relativo de neutralização total (PRNT)
- . preço da tonelada do PRNT
- . relação Ca/Mg

As recomendações de calcário devem ser efetuadas com base no PRNT a 100%. Caso o calcário adquirido possua um valor superior ou inferior a 100%, é necessário corrigir a quantidade recomendada. A velocidade de reação do calcário com o solo está intimamente relacionada com o grau de finura do corretivo. Quanto mais fino for o calcário, mais rápida, será sua reação no solo, pois a superfície do contato solo com o calcário, será bastante aumentada. Evidentemente, além desta característica, o poder de neutralização do calcário, reveste-se também de grande importância.

A calagem em geral tem um efeito residual que varia de 3 a 5 anos.

Após este período o processo de re-acidificação do solo pode acontecer, fazendo-se novamente sentir a pre-

sença de alumínio trocavel em condições tóxicas. Ressalte-se que este período é variável, tendo em vista o fator solo, precipitação, utilização da área e outros fatores.

Em solos com baixos teores de magnésio recomendase o uso de calcário dolomítico.

É necessário que se calcule o preço real do corretivo em função do PRNT e que se observe a relação entre o cálcio e o magnésio.

Entre dois calcários deverá ser escolhido o que apresentar a tonelada de PRNT mais barata.