TIPOS ESPECIAIS DE MILHO

OBTENÇÃO DE UMA CULTIVAR PARA PRODUÇÃO DE MINIMILHO EM CONSERVA

Pelo fato de não existir no mercado brasileiro uma cultivar adequada à produção do minimilho destinado à indústria de conservas, foi iniciado pelo CNPMS, em 1991, um programa para a obtenção de uma cultivar de milho para este fim. Para a indústria, é necessária uma cultivar que produza "espiguetas" de tamanho uniforme e macias.

No inverno de 1992, foram plantados, em fileiras pareadas de 10m cada, um material de milho pipoca de grãos brancos (CMS 43) e um material pipoca com uma fonte com macho-esterilidade citoplasmática. Foram efetuadas autofecundações em plantas férteis da variedade CMS 43 e a mesma planta foi usada como macho em cruzamento com plantas estéreis da outra fileira. No verão de 1992, foram plantadas, em fileiras pareadas de 5,0m cada e no espaçamento 1,0 x 0,25m, sementes das progênies S1 (mantenedora) e sementes F1 (macho-estéril). Por ocasião da polinização, as plantas S1 foram autofecundadas e cruzadas com plantas macho-estéreis. Na colheita, foi feita uma seleção de plantas e espigas e foram obtidos 45 pares de espigas S2 e macho-estéreis. Em maio de 1993, esses 45 pares foram plantados em fileiras de 5,0m e no espaçamento de 1,0x0,20m. Nova seleção para tipo de planta e porcentagem de macho-esterilidade foi efetuada no período de polinização. Foram feitas autofecundações nas plantas S2 e cruzamentos para as plantas correspondentes macho-estéreis. Foram obtidos 170 pares de espigas ao nível S3 de endogamia, linhagem mantenedora e a linhagem macho-estéril.

Em março de 1994, será efetuada uma ampliação de sementes dos melhores materiais, para avaliação junto às indústrias que trabalham com esse produto. - Elto Eugenio Gomes e Gama, Sidney Netto Parentoni, Cleso Antônio Patto Pacheco, Manoel Xavier dos Santos, Paulo Evaristo de Oliveira Guimarães.

CRUZAMENTOS DIALÉLICOS ENTRE DEZ LINHAGENS-ELITES DE MILHO DE ALTA QUALIDADE PROTEÍCA

No ano agrícola de 1989/90, foram selecionadas 22 linhagens S₃ amarelas, em cruzamentos topcrosses. Com o objetivo de avaliar a capacidade combinatória e fazer a previsão de híbridos, foi formado um dialélico com dez dessas linhagens-elites. Este dialélico foi avaliado segundo o método 4, modelo 1 de Griffing (1956) e instalado em Londrina, PR e Goiânia, GO, no ano agrícola de 1991/92. O delineamento experimental utilizado foi o de látice triplo 7 x 7, com parcela experimental de uma fileira de 5 m. Esse ensaio também foi conduzido em lote isolado, no inverno de

1992, em Sete Lagoas, MG para a obtenção de grãos F₂. Desses materiais sem contaminação de pólen normal, foram determinados a densidade real, o teor de proteína no endosperma e o teor de triptofano nessa proteína.

Na Tabela 277, são apresentadas as estimativas dos efeitos da capacidade geral de combinação (CGC) e os desvios-padrão dos efeitos de dois progenitores diferentes para quatro características em estudo. Observa-se que as linhagens 8, 9 e 10 foram superiores quanto a peso de espigas (t/ha), porcentagem de plantas acamadas e quebradas e de espigas doentes. Em relação à porcentagem de proteína no endosperma, o maior efeito positivo da CGC foi apresentado pela linhagem 10; já as linhagens 8 e 9 apresentaram valores negativos da CGC.

Na Tabela 278, são apresentados os resultados médios de seis características obtidas dos cinco melhores cruzamentos e as testemunhas. Observa-se que os melhores híbridos simples foram superiores em relação às populações QPM para a maioria das características avaliadas, exceto teor de proteína no endosperma. Para essa variável, a cultivar BR 451 apresentou nível bem maior que os demais tratamentos, principalmente em relação cruzamentos mais produtivos. Pelos resultados apresentados, pode-se concluir que as linhagens 8, 9 e 10 são as melhores desse grupo e poderão ser progenitoras de híbridos duplos e triplos competitivos. Contudo, deve-se ressaltar que, devido aos baixos valores da CGC para teor de proteína no endosperma, as linhagens 8 e 9 deverão ser cruzadas preferencialmente com linhagens-elites, para essa característica. - Paulo Evaristo de Oliveira Guimarães, Sidney Netto Parentoni, Álvaro Eleutério da Silva, Manoel Xavier dos Santos, Cleso Antônio Patto Pacheco, Elto Eugênio Gomes e Gama e Ricardo Magnavaca.

TABELA 277. Estimativas dos efeitos da capacidade geral de combinação de dez linhagens amarelas QPM para quatro características, em Londrina, PR e Goiânia, GO, no ano agrícola de 1991/92. CNPMS, Sete Lagoas, MG, 1992.

Linha- gem	Peso de	Acamamento	Espigas	Proteína no endosperma (%)	
	espigas (t/ha)	e quebramento (%)	doentes (%)		
1	0,26	0,67	1,08	0,36	
2	0,12	0,19	4,82	0,50	
3	-0,95	4,82	1,95	-0,04	
4	0,50	-1,05	6,70	-0,10	
5	0,82	0,35	2,08	-0,03	
6	-0,26	0,13	-5,68	0,53	
7	-0,10	2,25	-4,30	-0,06	
8	1,14	-0,83	-7,30	-0,57	
9	0,69	-3,42	-0,82	-0,96	
10	0,56	-2,73	-0,18	3,70	
D.P	0,35	1,91	3,72	0,19	
(G_i-G_i)		*		2	

TABELA 278. Peso de espigas (PE), em t/ha, porcentagem de acamamento e quebramento (AQ), de espigas doentes (ED), de proteína no endosperma (Protendo), de triptofano na Protendo (Triendo) e densidade dos grãos (DEN), em g/cm³, dos cinco melhores cruzamentos entre dez linhagens QPM e suas testemunhas, em Londrina, PR, e Goiânia, GO, no ano agrícola de 1991/92. CNPMS, Sete Lagoas, MG, 1994.

Material	PE	AQ	ED	Pro- tendo	Trien- do	DEN
Cruzamento		30	Halley	15,101	TRACTI	
3 x 8	7,9	4,0	2	6,68	1,35	1,27
8 x 9	7,7	1,8	6	5,71	1,49	1,27
2 x 9	7,4	3,4	11	7,07	1,28	1,28
4 x 8	7,3	1,2	8	7,24	1,24	1,27
2 x 8	7,1	2,2	7	7,67	1,26	1,28
Testemunhas						
CMS 453	6,3	15,5	9	7,08	1,24	1,22
CMS 454	5,4	6,8	9	7,46	1,24	1,23
BR 451	4,3	10,4	10	8,35	1,10	1,23
Média Geral	5,6	7,1	11	7,48	1,23	1,26
CV	18,1	76,0	92	7,31	11,07	1,97

AVALIAÇÃO DE LINHAGENS QPM PRECOCES EM CRUZAMENTOS COM DOIS TESTADORES DIVERGENTES

O programa de híbridos de alta qualidade protéica (QPM) do CNPMS é baseado na extração de linhagens em populações desenvolvidas pelo CIMMYT, que são de ampla base genética e usualmente não apresentam valores significativos de heterose em cruzamentos dialélicos. Portanto, é necessário que as linhagens obtidas pelo programa sejam selecionadas e classificadas quanto ao grupo heterótico, para a formação de sintéticos divergentes e híbridos competitivos.

No inverno de 1991, um grupo de linhagens precoces amarelas S3 e S6 de diversas populações foi cruzado com dois testadores: um híbrido simples e uma linhagem padrão, progenitores do melhor híbrido triplo QPM do programa naquele período. Os cruzamentos com o testador híbrido simples (1º TC precoce) e com a linhagem padrão (2º TC precoce) foram avaliados, respectivamente, em ensaios com delineamento látice simples 8 x 9 e látice simples 8 x 8 e parcela experimental de uma fileira de 5m. Esses ensaios foram instalados no ano agrícola de 1991/92, em Sete Lagoas, MG, Londrina, PR e Ijuí, RS.

Nas Tabelas 279 e 280, são apresentados os dados relativos aos melhores tratamentos dos ensaios 1º e 2º TC precoce, respectivamente. Pela Tabela 279, observa-se que os melhores topcrosses (TC) não foram competitivos em relação às testemunhas e, também, geralmente mais baixos. Considerando-se somente Ijuí, pode-se relatar que alguns

TC foram mais produtivos que o TC com a linhagem padrão, destacando-se o TC 52, por apresentar valores de peso de espigas (PE), porcentagem de acamamento e quebramento (AQ) e de espigas doentes (ED) compatíveis com as testemunhas. Em relação ao 2º TC precoce, observase que o TC 56 apresentou porte muito baixo, foi superior para AQ e competitivo em relação a PE e ED. Outro ponto relevante no 2º TC precoce foi o péssimo desempenho da testemunha TC 15, que produziu bem menos que a média e apresentou o maior valor para ED. Como a linhagem que está sendo avaliada no TC 15 é também uma das progenitoras do híbrido simples testador do 1ºTC precoce, há a necessidade de que a mesma seja substituída por outra linhagem mais eficiente e do mesmo padrão heterótico.

Pelos resultados apresentados, pode-se concluir que foram identificadas poucas linhagens com desejável capacidade combinatória, indicando a necessidade de se obter e testar novas linhagens, para que se consiga desenvolver testadores e sintéticos mais divergentes e híbridos mais competitivos. - Paulo Evaristo de Oliveira Guimarães, Manoel Xavier dos Santos, Sidney Netto Parentoni, Elto Eugenio Gomes e Gama, Cleso Antônio Patto Pacheco, Fernando Tavares Fernandes e Ricardo Magnavaca.

TABELA 279. Peso de espigas (PE), em t/ha, porcentagem de acamamento e quebramento (AQ), de espigas doentes (ED) e altura de planta (AP), em cm, obtidos nos melhores tratamentos do 1º topcross QPM precoce, em Sete Lagoas, MG, Londrina, PR, e Ijuí, RS, no ano agrícola de 1991/92. CNPMS, Sete Lagoas, MG, 1994.

Tratamentos	Sete Lagoas	Lon- drina	Ijuí	Média	AQl	ED^1	AP ¹
Testemu- nhas	No. 1	4			2		nev es
BR 201	2,3	6,3	11,0	6,6	19	25	178
XL 560	2,7	5,6	10,0	6,1	22	22	170
AG 122	2,6	6,1	8,4	5,7	5	30	167
AG 514	2,5	5,9	8,0	5,5	2	30	176
C 606	2,1	7,0	7,0	5,4	6	22	170
TC-Padrão	2,3	8,5	5,2	5,3	8	32	184
Topcrosses							
TC 61	2,4	6,8	6,5	5,2	21	45	15'
TC 52	1,4	4,2	8,4	4,7	6	32	17
TC 13	2,1	3,6	6,7	4,1	19	50	15
TC 30	1,4	3,3	7,3	4,1	23	29	16
TC 18	1,4	3,3	7,4	4,0	21	21	16
TC 11	1,9	4,9	4,9	3,8	14	35	150
Média	1,5	3,0	5,3	3,3	12	26	164

¹Média dos três locais.