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a b s t r a c t

This study aimed to evaluate the effect of FecGE mutation on the development of ovarian follicles. To this
end, 42 Santa Inês ewes were genotyped for FecGE mutation and classified as wild-type (FecGþ/þ), het-
erozygous (FecGþ/E) or mutant homozygous (FecGE/E). Ovarian fragments were processed, and the follicles
were analyzed with regard to the morphology and morphometry using classical histology. For the
evaluation of follicular dynamics, ewes underwent oestrous synchronization and were monitored
throughout an interovulatory period. A higher (P< 0.05) percentage of morphologically normal follicles
in the primordial stage was identified in FecGE/E (90.0%) and FecGþ/E (88.1%) ewes than in the FecGþ/þ

(73.0%) ewes. There was also a significantly greater (P < 0.05) number of morphologically normal follicles
in the FecGE/E (87.3%) and FecGþ/E (83.3%) ewes than in FecGþ/þ (76.8%) ewes in the transitional stage. A
smaller (P< 0.05) diameter was observed in the secondary follicles in FecGE/E (93.8 mm) ewes than in
FecGþ/E (171.8 mm) ewes. Regarding follicular dynamics, FecGE/E ewes showed a greater (P< 0.05) number
of ovulations (2.5 ± 0.2) than FecGþ/þ ewes (1.5± 0.3) ewes. Ovulatory follicles were smaller (P< 0.05) in
the FecGE/E (5.1mm) and FecGþ/E (5.2 mm) ewes than in FecGþ/þ (5.8mm) ewes. Santa Inês nulliparous
ewes carrying the FecGE mutation showed a greater proportion of morphologically normal follicles in the
primordial and transitional stages than those not carrying the mutation. FecGE/E ewes demonstrated a
higher number of ovulated follicles and that FecGE/E and FecGþ/E ewes presented ovulatory follicles with a
smaller diameter.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The mechanism of ovarian folliculogenesis is a consequence of a
complex endocrine interaction between the central nervous system
and the ovary as well as the paracrine and autocrine function of
intra-ovarian factors [1]. Among the mechanisms affecting follic-
ular development, the performance of a set of genes called the
fecundity genes (Fec) [2,3] has been highlighted. In ewes, natural
genetic mutations are related to either anovulatory cycles or cycles
with a 20% and 40% or >100% prolificacy rate [1]. These changes
.C. Azevedo).
support the importance of some members of the transforming
growth factor beta superfamily and its receptors as regulators of
ovarian follicular development and ovulation rate (OR) [4e6].

Ewes carrying mutations in the Fec genes, in addition to
showing differences in OR, ovulate from smaller follicles [7,8].
These mutations also affect the response of follicles to hormonal
stimuli, regardless of their diameter [9], as well as the development
of the uterus and the ovaries causing sterility [10e12].

A specific mutation in the growth differentiation factor 9 (GDF9)
gene, called FecGE, expresses a phenotypic behavior contrary to
other mutations [13]. In this mutation, homozygous ewes showed
an increased OR (82%) and prolificacy (50%) [14].

Some studies described the interplay between FecGE mutations
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and animal production [15,16], pointing out some ovarian and
follicular features that differ between these mutant ewes (Chaves
et al., 2018, unpublished data). However, to our knowledge, there
are no reports describing the effects of FecGE effects on follicle
growth until their ovulation. Therefore, this study aimed to eval-
uate the influence of the FecGE mutation in nulliparous Santa Inês
ewes, on both follicle morphometry and morphological features, in
the early stages of follicular dynamics and development.
2. Material and methods

2.1. Place and experimental animals

This research was conducted after evaluation and approval from
the Committee of Ethics in Animal Use, Brazilian Agricultural
Research Company - Embrapa, Tabuleiros Costeiros Unit, Aracaju-
SE, Brazil (License: 13072016.006).

Nulliparous ewes (n¼ 42) belonging to the in situ Conservation
Center of Santa Inês Ovines of Embrapa Tabuleiros Costeiros located
in Pedro Arle Experimental Field (Frei Paulo-SE, Brazil) were used.
This experimental field is geographically situated at Latitude
10�3601500 South and Longitude 37�3802900 West.

The ewes were genotyped for FecGE in the Laboratory of Animal
Genetics of Embrapa Genetic Resources and Biotechnology (Brasí-
lia-DF, Brazil) using the PCR/RFLP technique as reported by Silva
et al. [14]. According to the genotyping, the ewes were distributed
into the following three groups: wild-type (FecGþ/þ), heterozygous
(FecGþ/E), and mutant homozygous (FecGE/E).
2.2. Experiment 1: morphometry and follicular morphology

For this evaluation, ewes (n¼ 21) with a mean age of 16.0± 1.4
months and an average mean body weight of 38.6± 5.7 kg,
belonging to the FecGþ/þ genotypes (n¼ 5), FecGþ/E (n¼ 10), and
FecGE/E (n¼ 6) were used. The ewes were slaughtered, and their
ovaries were aseptically collected and transported in buffered
medium (DPBS) containing antibiotics (gentamicin) to the Animal
Reproduction Biotechnology Laboratory in the Embrapa Tabuleiros
Costeiros (Aracaju-SE, Brazil).

Morphometry and follicular morphology were evaluated using
classical histology. Tissue fragments (3� 3� 1mm) were removed
at random from the right and left ovarian cortex of each ewe to be
processed histologically according to Luz et al. [17]. After fixing
these fragments into paraffin, 7-mm-thick serial cuts were made
with a microtome (Leica RM 2125RT, Heidelberg, Germany) to
prepare the microscope slides. After staining with hematoxylin and
eosin, as proposed by Behmer et al. [18], the slides were screened
every 28 mm under an optical microscope (Olympus BX41TF, Tokyo,
Japan) with a magnification of 100 or 400x, depending on folicular
size.

Follicles were classified as per their developmental stage by
considering their morphology and the amount of granulosa cell
layers surrounding the oocyte. Based on the report by Silva et al.
[19], follicles (n¼ 4323) were classified as primordial, transitional,
primary, secondary, or antral. Follicles were classified as degenerate
when they showed a retracted oocyte, with a pyknotic nucleus and
disorganized granulosa cells detached from the basement mem-
brane [20].

Ovarian follicle images were captured using a digital camera
linked to an optical microscope (Olympus, Tokyo, Japan). Follicles
were measured using a micrometric caliper rule and the ZEN
software, version 2011. Two diameter readings were recorded for
each follicle, and the average of these two values was calculated as
per the method by Lundy et al. [21].
2.3. Experiment 2: follicular dynamics

2.3.1. Estrous cycle synchronization
In order to evaluate follicular dynamics, ewes (n¼ 21) that were

equally distributed into the genotypes: FecGþ/þ, FecGþ/E, and FecGE/

E, had a mean age of 30.4± 5.8 months, and had a mean body
weight of 53.1± 5.3 kg were used.

Ewes were submitted to an the estrous synchronization protocol
adapted from Lima et al. [22]. On day zero (D0), vaginal sponges
impregnated with 60mg of medroxyprogesterone acetate (Pro-
gespon® - Syntex - Buenos Aires, Argentina) were inserted, and
125 mg of Cloprostenol (Prolise®-Tecnopec - Buenos Aires,
Argentina) were injected intramuscularly. On day nine (D9), the
sponges were removed, and the ewes weremonitored for estrus for
30min every 12 h (6:00 and 18:00) by a trained practitioner
assisted by a vasectomized ram.

2.3.2. Ultrasonography evaluation
Follicular dynamics, during one interovulatory period, were

evaluated by a single professional using an ultrasound machine
(MINDRAY DP2200Vet, Nanshan, China) coupled with a 7.5 -MHz
rectal linear transducer. The examinations were performed from
the first acceptance of mounting after the synchronization. During
the metaestrus, diestrus, and proestrus, ultrasonography was car-
ried out every 24 h, [23]. From estrous detection to ovulation, ul-
trasonography evaluation was performed every 12 h (6:00 and
18:00) [24]. The time of ovulation was considered as corresponded
to the mean time between the examination that detected the
preovulatory follicle and the one wherein the follicle was no longer
visualized, as described by Ten�orio Filho et al. [25].

Follicles were classified according to diameter. However, only
those structures �2mm in diameter were considered. Follicles
were classified as recruited (�2mm to� 4mm), selected (>4mm
to� 5mm), dominant (>5mm), or ovulatory (>5mm and present
in the last follicular wave) [26].

Follicular development, ovulation number, ovulatory follicle
diameter, estrous duration, and the time interval between the onset
of estrus and ovulation were analyzed.

2.4. Statistical analysis

Initially, the variables were tested for normal distribution based
on the Lillierfors test and for homoscedasticity using the Bartlett
test. When necessary, the datawere transformed using the Box-Cox
methodology [27]. Further, the parametric variables were submit-
ted to ANOVA with Tukey's post-test. For the evaluation of non-
parametric variables, the KruskaleWallis test was used with
Dunn's post-test. The difference between the genotypes for the
observed and expected of morphologically normal follicular fre-
quencies was evaluated using the Chi-square test.

Statistical tests were performed using the IBM SPSS Statistic
software, version 20. A significance level of 5% was considered.

3. Results

3.1. Morphometry and follicular morphology

The distribution of the evaluated follicles, considering both the
developmental stages and the genotype groups, is shown in Fig. 1.

Although the FecGE genotype did not influence the total number
of follicles in the ovary (P> 0.05), the number of follicles per stage
of development was influenced (P< 0.05), the number of follicles
per development stage was affected (P< 0.05). FecGEE/E ewes
showed a higher percentage (P< 0.05) of primordial follicles and
lower percentage of (P< 0.05) transitional follicles than those from



Fig. 1. þ/þ: homozygous wild-type genotype; þ/E: mutant heterozygous genotype; E/
E: mutant homozygous genotype.
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other genotypes. Regarding the percentage of primary follicles,
FecGþ/þ ewes presented a lower value than the other genotype
groups (P< 0.05).

Concerning the follicular morphology, a higher percentage
(P< 0.05) of normal follicles was observed in the primordial folli-
cles in FecGE/E (90.0%) and FecGþ/E (88.1%) ewes as compared to that
in the FecGþ/þ (73.0%) ewes. With respect to the transitional folli-
cles, ewes carrying the FecG mutation had a higher percentage
(P< 0.05) of normal follicles (FecGE/E - 87.3%, FecGþ/E - 83.3%) than
the non-carriers (FecGþ/þ - 76.8%). There was no influence of the
genotype (P> 0.05) on the morphology of primary (FecGE/E - 87.0%,
FecGþ/E - 80.6%, FecGþ/þ - 66.7%), secondary (FecGE/E e 78.6%, FecGþ/

E - 100.0%, FecGþ/þ - 80.0%), or antral follicles (FecGE/E e 75.0%,
FecGþ/E e 78.6%, FecGþ/þ - 100.0%).

The results of the morphometric evaluation of the follicles are
presented in Table 1. It can be observed that the secondary follicle
diameter from FecGE/E ewes was lower (P< 0.05) than that of the
FecGþ/E ewes, but no different (P> 0.05) to that of FecGþ/þ ewes. The
effect of genotype on the diameter of the antral follicles was not
evaluated because of the low number of ewes with follicles in this
development stage.

3.2. Follicular dynamics

The follicular wave pattern ranged from three (n ¼ 15) to four
(n ¼ 6) waves in the different genotype groups. There was a
reduced number of animals presenting four follicular waves per
genotype (3 þ/þ, 2 in þ/E, and 1 in E/E); therefore, the statistical
Table 1
Mean diameter (mm) with standard error of the Santa Inês nulliparous ewe follicles
genotyped for FecGE.

Follicular stage FecGE genotypes

þ/þ þ/E E/E

Primordial 23.6± 1.6 20.6± 0.8 23.6± 0.8
Transitional 26.9± 3.2 24.9± 1.2 26.5± 1.2
Primary 37.0± 6.2 43.3± 3.4 43.7± 2.0
Secondary 129.7± 13.1b 171.8± 6.5a 93.8± 6.6b

Antral(*) 429.0± 59.4 201.0± 22.3 250.7± 57.5

þ/þ: non-mutant homozygous genotype;þ/E:mutant heterozygous genotype; E/E:
mutant homozygous genotype.
(*)Follicular stage with an insufficient number of replicates for statistical analysis.
Different letters on the same line mean significant difference (P < 0.05).
analysis of follicular dynamics was conducted using only data from
ewes that presented three follicular waves (Table 2).

Estrous duration did not differ (P > 0.05) among the ewes,
regardless of the genotype group (34.3 ± 3.1 h in þ/þ, 39.4 ± 4.3
in þ/E and 39.4 ± 2.2 in E/E). Similarly, the interval between estrus
onset and ovulation did not differ (P > 0.05) among ewes, regard-
less of genotype group (21.3 ± 2.3 h in þ/þ, 28.0 ± 4, 1 in þ/E and
26.3 ± 2.6 in E/E).
4. Discussion

Ewes carrying mutations in the Fec genes have specific traits in
both morphology and follicular dynamics [28e30]. These facts
support the importance of Fec genes over folliculogenesis and allow
a better understanding of the aspects associated with reproductive
biology [31,32].

Thus, we hypothesized that the mutation in the GDF9 gene,
FecGE, would also show changes in the follicle morphology, either in
the earlier or in the more advanced follicular development stages. It
was also believed that these changes would elucidate some of the
morphophysiological mechanisms responsible for the higher OR
and prolificacy in FecGE ewes. The results indicated that some
follicular parameters differed between genotypes, making it
possible to describe the effect of FecGE on the development of the
follicles.

Although a higher percentage of primordial follicles were
observed in mutant homozygous ewes (FecGE/E), the number of
follicles recruited during the ovulatory wave by ewes from this
group was not higher. This is contrary to the reports by Silva et al.
[33] and Guti�errez [34] who found that the number of recruited
follicles is related to the size of the pool of primordial follicles.

Even considering primordial and transitional follicles in the
same follicular development stage group [35] that would increase
the number of primordial follicles, the follicular pool vs. recruit-
ment relation does not occur in FecGE/E because these ewes did not
present a greater number of follicles recruited in the ovulatory
wave.

The higher percentage of morphologically normal follicles in the
primordial and transitional stages in FecGE ewes can be hypothe-
sized as an outcome of the increased GDF9 expression by these
ewes. The importance of GDF9 protein in follicle development
during the early developmental stages [4,36] and higher expression
of this protein in the preantral follicles when compared to the other
stages of development is known [37]. Similarly, the importance of
GDF9 was also identified in the preantral follicles of goats via the
stimulation of the transition from primordial follicles to primary
follicles and the consequent progression to secondary follicles [38]
as well as the anti-apoptotic action of GDF9 in the granulosa cells of
the preantral follicles [39].

Smaller diameters of the secondary follicles in FecGE/E and FecGþ/
Table 2
Follicular dynamics parameters (mean± standard error) of the ovulatory wave of
nulliparous Santa Inês ewes genotyped for FecGE mutation.

Parameters FecGE genotypes

þ/þ þ/E E/E

Recruited follicles (�2 to� 4mm) 4.0± 0.4ab 5.6± 0.4a 3.7± 0.4b

Selected follicles (>4 to� 5mm) 2.7± 0.2 3.2± 0.2 2.5± 0.2
Dominant follicles (>5mm) 1.7± 0.4 2.0± 0.0 1.7± 0.4
Ovulatory follicles (mm) 5.8± 0.2a 5.2± 0.1b 5.1± 0.2b

Ovulated follicles (no) 1.5± 0.3b 1.8± 0.2ab 2.5± 0.2b

þ/þ: non-mutant homozygous genotype;þ/E:mutant heterozygous genotype; E/E:
mutant homozygous genotype. Different letters on the same line mean significant
difference (P< 0.05).
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þ ewes was also observed by Chaves et al. (unpublished data).
Despite the smaller number of follicles recruited in ewes from

the E/E genotype when compared to þ/E and similar to þ/þ, more
follicles ovulated in ewes from the E/E genotype than in those from/
þ and similar to þ/E. Driancourt et al. [40] reported that in ewes
carrying the Booroola polymorphism, a higher number of ovulated
follicles may occur due to increased recruitment of follicles and/or
increased resistance to atresia. Thus, based on the obtained results,
we can suggest that the higher number of ovulated follicles
observed in FecGE/E ewes is not a result of a higher follicular
recruitment by these females, as hypothesized and suggested by
Chaves et al. It may happen that in mutant homozygous ewes, the
follicles are more resistant to atresia, as observed in Finn ewes that
had high rates of ovulated follicles [29]. This occurrence may be
favored by the early differentiation of the granulosa cells that
promote earlier onset of LH receptors [41]. Additional studies
analyzing the anti-apoptotic role of GDF9 in the granulosa cells of
FecGE antral follicles during the recruitment phase will be impor-
tant to elucidate the mechanisms responsible for increased number
of ovulated follicles in ewes carrying this mutation.

Here, ewes carrying FecGE had ovulatory follicles with a smaller
diameter than that in ewes that did not carry the mutation. This
result is similar to other studies that have revealed ewes carrying
mutations associated with greater prolificacy ovulated from
smaller follicles [30,41]. The GDF9 protein, which is involved in
some aspects that precede and are necessary for ovulation may also
be responsible for the smaller diameter of ovulatory follicles.

With respect to its functions, GDF9 is responsible for increasing
the proliferation of the granulosa cells [42,43] that increases the
concentration of estradiol by sensitizing the somatic cells to the
action of gonadotrophins [44]. In addition, the GDF9 protein is
involved with the nuclear maturation of oocytes [45] and increased
progesterone production by the granulosa cells [42].

5. Conclusions

Santa Inês nulliparous ewes carrying the FecGE mutation
showed a greater proportion of morphologically normal follicles in
the primordial and transitional stages than those not carrying the
mutation. We can also conclude that FecGE/E ewes demonstrated a
higher number of ovulated follicles and that FecGE/E and FecGþ/E

ewes presented ovulatory follicles with a smaller diameter.
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