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Abstract 
Sourgrass (Digitaria insularis) is highlighted as one of the most troublesome weeds in Brazilian agriculture. The 
growth analysis of the species and biotypes with resistance to glyphosate are preponderant to support 
management strategies. In this way, the aim of this work is to compare the growth of biotypes resistant and 
susceptible to glyphosate, and to characterize the species growth in field conditions. The greenhouse experiment 
was installed in randomized blocks design, in factorial scheme 2 × 10, with eight replications. Factor A 
comprised the biotypes, and factor B the fortnight evaluations. The dry mass of roots, stems, leaves and shoot 
were assessed, besides leaf area and plant height. From these variables, the relative growth rate, net assimilation 
rate and leaf area ratio were calculated. For the field experiment, the same variables were assessed and the same 
parameters were calculated, without distinction on resistant or susceptible biotype. The biotype with resistance to 
glyphosate did not show adaptative disadvantages compared to the susceptible one. In this way, it is necessary to 
prevent the entry of resistant biotypes in cropped fields, as once established the area may not naturally return to 
the initial frequency of susceptible biotypes. Sourgrass shown slow initial growth and dry mass accumulation up 
to 42 days after emergence, indicating that control of this specie should be performed preferably before this 
period. 
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1. Introduction 
Sourgrass (Digitaria insularis) is characterized by being perennial, erect, reproduced by seeds and rhizomes, and 
adapted to germinate under broad climatic conditions (Gemelli et al., 2012; Mendonça, C. Martins, D. Martins, 
& Costa, 2014). Nowadays, it stands out as one of the most problematic weeds in tropical Brazilian agriculture. 
The wide dissemination of glyphosate-resistant biotypes in the main grain-producing regions, associated with the 
difficulty to control perennialized plants, make its management a great challenge for farmers (Lopez-Ovejero et 
al., 2017; Gilo, Mendonça, Santo, & Teodoro, 2016). Studies evaluating the biological/ecological behavior of 
this species are of great importance to better understand its dynamics in the environment; thus, help in the 
elaboration of effective management strategies. 

The analysis of weed growth parameters is an important component in the evaluation of their ability to interfere 
on crop growth, as it is directly correlated to competitive ability. In addition, in perennial and rhizomatous plants 
such as sourgrass, knowing its growth rate may help in determining the best period for control. After the 
formation of rhizomes, the control levels following glyphosate application tends to decrease probably due to the 
accumulation of starch, which tend to reduce herbicide translocation to growth points (Machado et al., 2008). 
Studies were conducted to characterize the growth of sourgrass (Marques et al., 2013, 2014; Machado et al., 
2006). However, there is no study contrasting these results with those observed under field conditions.  

Plant development is affected by a set of biotic and abiotic factors. It is believed that the limitation of space in 
the pots used as experimental plots in greenhouse conditions may underestimate plant's growth capacity, 
especially in the formation of rhizomes. Thus, studies evaluating sourgrass growth in different field conditions 
should be contrasted with data observed in controlled environments.  
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In addition to a growth analysis of sourgrass in field conditions, it is necessary to understand the factors 
contributing to the rapid dispersion of resistant biotypes within the crop. This may be related to continuous use 
of the selection pressure agent (herbicide), as well as to differential adaptive capacity between biotypes. This 
different adaptive capacity is called “fitness”, which can be defined as the ability to leave fertile offspring for the 
next generation (Silvertown & Charlesworth, 2001). 

However, the number of viable seeds is directly related to the competitive ability of the biotypes. Thus, the cost 
of resistance can be measured as a reduction in the rate of growth and/or reproduction of the resistant biotype, 
when compared to the susceptible one (Newell, 2006). Some studies have shown a fitness cost associated with 
resistance of weeds to herbicides (Moreira, Melo, Carvalho, & Christoffoleti, 2010). However, others have not 
shown any effect (Westhoven et al., 2008; Travlos & Chachalis, 2013). 

Evaluations of these differences between susceptible and resistant biotypes are fundamental to establish 
management strategies. Differences of adaptability may dictate management strategies aimed at reducing the 
density of resistant biotypes. Studies addressing the adaptive cost of sourgrass resistance to glyphosate are scarce. 
Martins, Barroso, and Alves (2017) have reported that seeds from resistant sourgrass biotypes germinate more in 
higher temperature ranges, water deficit and sowing depth than those from susceptible plants; thus, the full 
growth potential of susceptible and resistant biotypes needs to be clearly elucidated. It is necessary to understand 
if resistance to glyphosate reduces the biotype growth rate. This information is relevant to understand and define 
the competitive capacity between the biotypes and, therefore, contribute to the development of management 
strategies for this weed. 

The objective of this work was to compare the growth rates of susceptible and resistant biotypes of sourgrass to 
glyphosate in a controlled environment and to describe the growth of the species in field conditions. 

2. Material and Methods 
Two experiments were conducted, one into greenhouse and other under field conditions, in the 2015/16 cropping 
season, both at Embrapa Soja, in Londrina-PR, Brazil. 

Into the greenhouse, the experiment was installed on September 30, 2015, in completely randomized blocks 
design, in factorial scheme 2 × 10 (resistant and susceptible biotype × ten plant harvesting times), with eight 
replications. Experimental plots consisted of 160 plastic vases with volume of 500 cm3 filled with substrate, 
where 80 pots were seeded with glyphosate-resistant D. insularis biotypes and another 80 pots with the 
susceptible biotype, at approximate density of 12 seeds per vase, with subsequent thinning to 2 plants per vase. 

The field experiment was installed in October 2015, in a soil containing 72% clay; 2.4% O.M.; 6.5 pH (H2O); 
25.2 g kg-1 C; 7.5 mg kg-1 P; 0.3 cmol kg-1 K+; 4.5 cmol kg-1 Ca2+; 0.5 cmol kg-1 Mg2+; 0.0 cmol kg-1 Al3+; 4.0 
cmol kg-1 H+ + Al3+; 5.51 cmol kg-1 CTC, in the completely randomized design, in factorial scheme with eight 
replications, with plots of 1.5 × 3.0 m. Plots were seeded with approximately 40 seeds m-2 of D. insularis, 
followed by light harrowing for seed incorporation. 

In both experiments the evaluations were performed at 14 day intervals from plant emergence (DAE). In each 
evaluation the height of 16 plants per treatment was measured, selecting eight plants per treatment being 
randomly, which were harvested whole, also with the root system. Roots were washed in tap water for the 
removal of soil and impurities, after which the stem, leaves, roots and, after flowering, the panicles were 
separated. Each organ of the plants was placed in paper bags and taken to dry into forced air circulation oven at 
70 ºC until reaching constant weight. Subsequently the material was weighed in precision scale. Before drying, 
all the plants had their leaf area quantified by means of a photoelectric table meter, LI-COR brand, model 3100. 

The data set was submitted to analysis of variance by the F-test at 5% probability, being later explored by 
regression analysis with 95% confidence intervals (Brighenti, Gazziero, Voll, Adegas, & Vall, 2001). From the 
evaluated parameters, we opted for a functional approach for the growth analysis, being estimated the following 
parameters: 

Relative Growth Rate (RGR) = Ct/DMt;  

Net Assimilation Rate (NAR) = Ct/La;  

Leaf Area Ratio (LAR) = La/DMt.  

Where, Ct = dry mass; DMt = shoot dry mass; La = leaf area. 
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(2013) and Carvalho et al. (2013) observed exponential increase in dry mass, respectively, from 70 and 50 DAE 
onwards, and flowering, respectively, 120 and 49 DAE. Variations between experiments are attributed to 
environmental conditions inherent to locality (temperature, luminosity), genetic variability among ecotypes, 
water and nutrient availability, and restrictions imposed on the development of the root system. Thus, although 
greenhouse trials portray the trend of growth behavior, they may underestimate sourgrass competitive ability. 

The best period for sourgrass control is up to 42 DAE, when rhizomes have not yet been formed. Due to its slow 
initial growth, management strategies that promote rapid soil cover should be prioritized. However, due to the 
large increase rate in dry mass observed after this date, if the control is not performed sourgrass can become a 
dominant species due to its great dominance ability.  
4. Conclusions 

The biotype of sourgrass resistant to glyphosate do not present disadvantages in its growth/development 
compared to the susceptible one used as reference. In this way, it is necessary to prevent the entry of resistant 
biotypes in the area, because once established the area does not return naturally to the initial frequency 
susceptible plants. 

Sourgrass has slow initial development and great increase in growth rates from 42 DAE onwards, which suggests 
that the control of this species should be performed preferably before this period. 
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