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Abstract 

We use the simulation model or Chalfant and Gallant (1985) to investigate the fit or a 

Fourier flexible form to a cost function when interest is to estimate elasticities of substi­

tution. The data is subject to errors in variables and the estimation method is seemingly 

unrelated regressions. We use two approximating Fourier functional forms with 13 (FFF13) 

and 22 (FFF22) parameters. The biases in point estimation are negligible for FFF13. Biases 

and large sample distributional approximations to c1assical t-statistics deteriorate when one 

moves {rom FFF13 to FFF22. When estimates are properly centered and scaled a normal 

approximation holds. 



1 Introduction 

The dassical use of a flexible fun ct ional form in econometrics to tit an indirect uti lity func­

tion in consumer theory or a cost function in the theory of the tirm usually involves the 

specitication of a model in a parametric family. For the theory of the tirm one can achieve 

tbis purpose specifying the cost function as C(p, u) = J(oo + f3'w + (1/2)wTw, v) where the 

function J is known, w is a vector of monotonically t ransformed prices p, and v is a function 

of output y that may depend on prices . The constant ao, the vector f3, the matrix r, as 

weU as any other unknown constants appearing in the function v, are parameters. A variant 

for consumer demand obtains dropping v and letting p be a vector of income normalized 

prices. Typical examples are the Translog cost (indirect utility) function and the gcneralized 

Box-Cox family. See Berndt and I<baled (1979), Gallant (1981), and GaUant (1982) for more 

details. 

The object ive of the econometric exercise of fitting an expend iture system is, usually, 

to estimate elasticit ies . One can completely specify these quantities with knowledge of the 

cost (indirect ulility) function and its first and second order derivatives . From a stat istical 

poinl of view lhe est imation of elasticities simpli fies if t he response model is taken from a 

parametric farnily and if the corresponding expenditure syslem is linear. This is the case of 

lhe theory of the firm with the u e or the Translog. 

A parametric family of cost (indirect utility ) functions is said to be flexible if it endows 

the estimation procedure with nonparametric properties, that is, if we have a reasonably 

dose approximation to target population quantities (strong consistency, for example) even ir 

the true response f unction is not a member of the farnily for any parameter choice. Relati vely 

recent stud ies indicate that none or the dassical parametric families can ach ieve Aexibi li ty 

in th is sense. See White (1980), Gu ilkey, Lovell and Sickles (1983), Gallant (1981,1982), and 

EI Badawi , Gallant and Souza (19 3) . The reason for the lack of flexibility seems to be the 

failure of a Taylor series expansion to provide a uniform approximation simultaneously to a 

true response function and iis firsi and second derivat ives. In t his context Gallant (1981) in­

troduces the Fourier Aexible form for ind irect util ity fun ct ions. The version for cosi functions 

appeared in Gallant (1982). Essentially the Fourier flexible form superimposes a irigonomet-
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ric polynomial to a Translog specification. The inclusion of sine and cosine terms endows 

the Translog family with the properties of Fourier series expansions. It is well known that a 

Fourier series can approximate a funetion in a Sobolev sense, that is, in a metric that a\lows 

a uniform approximation simultaneously for a funetion and its derivatives . See Edmunds 

and Moscatelli (1977). li the ohservational model used to approximate the factor (consumer) 

demand system has additive and independent errors one can prove strong consistency of es­

timators of elasticities, conditionally on a realization of prices and other covariates, for any 

of the standard statistical procedures. For this result to hold it is necessary to introduce a 

dependence of the order of the approximating Fourier ser ies on the sample size. The question 

of asymptotic normality in a context where the numher of parameters grow with sample size 

is more delicate. Only recently this problem has been properly addressed and solved under 

very special circumstances. These circumstances hypothesize faetor demand systems and 

multivariate least squares (seemingly unrelated regressions) with a known variance matrix. 

Sufficient conditions for asymptotic normality require the growth of the number of parame­

ters at a rate slower than any power of the sample size. See Gallant and Souza (1991) and 

also Andrews (1994) for a flavor of the reguJarity cond it ions that may be involved in general 

and for a strategy to prove consistency and asymptotic normality in semiparametric models . 

It has been argued in the econometric literature that actual faetor demand systems do 

not show addit ive errors. The problem of errors in variables is intrinsic to such systems . Any 

realistic applicat ion of seemingly unrelated techniques will face th is condition which bave not 

been contemplated yet in theoretical studies . In this context Chalfant and Gallant (1985) 

use a reoriented central composite design and Monte Carlo simulation to investigate the 

performance of the Fourier Aexible cost function. They restriet their attention to the study 

of statistical biases. Two variables define the faetor space: a measure of elasticity intensity a 

and a tecbnology >. chosen in the homothetic Box-Cox family. They fit a quadratic form in a 

and >. to the response surface of biases generated by elasticities of substitution estimated via 

seerningly unrelated regressions. Here we extend Chalfant and Ga\lant's study. We inves­

tigate distributional results and deepen the discussion on statistical biases. Our objeetive, 

basing conclusions on Monte Carlo evidence, is to provide specific recommendations and 

warrungs in regard to the praetical use of the Fourier f1exible cost funetion . We organize 
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our presentation as foUows. In Section 2 we introduce the family of cost functions we use 

later. These are the general Box-Cox form and the Fourier f1exible form o In Section 3 we 

describe in detail the experiment of Chalfant and GaUant (1985) . In Section 4 we present 

our simulation results . We base our analysis on the absolute biases observed in estimates of 

substitution elasticities and in two measures of goodness of fit: the chi-square test statistic 

and the Shapiro-Wilk test statistic. FinaUy we summarize our findings in Section 5. 

2 Cost Functions 

Consider a production scheme involving n factor inputs. Let p' = (PI, ... , Pn) be a vector of 

input prices and let q' = (ql> ' " ,qn) be the vector of input quantities. The total expenditure 

resulting from the choice of quantity vector q is p'q. Let y = f(pl> '" ,Pn) be the production 

function . The producer's problem, given a vector of facto r input prices P and a levei of 

output y, is to minimize total expenditure p'q subject to f(Pt, ... ,Pn) = y. The minimum 

expenditure C(p, y) corresponding to the solution q(p,y) is the producer's cost function . The 

vector q(p, y) defines the et of factor demand functions. 

The theory of the firm may impose regularity conditions on C(p, y) . A minimal set of 

regularity conditions will impose linear homogeneity in prices, monotonicity in prices and 

output, and concavity in prices. A cost function C(p, y) is said to be linear homogeneous if 

C(rp, y) = rC(p, y) for any r > 0, monotonic if \7p,yC(p, y) > 0, and concave if \7~C(p, y) is 

negative semidefinite. Concavity and linear homogeneity imply that V'~C(p, y) has rank at 

most n-l with the price vector p being an eigenvector of root zero. A simplifying assumption 

on functional form imposes homotheticity (a general form of constant returns to scale), that 

is C(p,y) = h(p)g(y) where h(p) is linear homogeneous . 

A linear homogeneous technology (cost function) wiH satisfy Shephard's lemma, that is 

q(p,y) = \7pC(p,y) or, equivalently, Si = 8C(p,y)/8p;/C(p,y), where Si is the cost share of 

the ith input factor. Typically the econometricians that deal with expenditure systems will 

specify a parametric form for C(p, y) and postulate an observational multivariate (possibly 

nonlinear) statistical model Si = 8C(p, y)/ 8p;/C(p, y)+€i, i=l...n-l. In this latter expression 

Si represents an observed share, pare observed prices, and one share equation has been 
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removed to avoid a singular model. 

In some instances is more convenient to express the cost function , pnces, and output 

in log (base e) formo If g(/, v) represents the log cost function, I = In p, and v = In y , the 

observational model becomes S; = 8g(/, v) f 81; + €;. 

The most common stat isticaJ technique used in an attempt to determine C(p, y) or 

g(/, v) statistically is seemingly unrelated regressions. This estimation techn ique proceeds 

as follows. For observation t=l...n let s; = (s", ... , S(n_I)') be the vector of shares and 

x; = (/;, v,) . We can write S, = q,(x" O) + c, where f, is an n-l dimensional error vec­

tor and O is a parameier derived from a compleiely specified the cost function. Lei 

S( O, V) = L::': I (s, - q,( x" O))' V-I (s, - q,( x" O)) and lei \li (O) = O be a set of restrictions 

on O. The seemingly unrelated regressions estimate of O obtains firsi finding Õ that mini­

mizes S(O ,1) subject to \lI (O) = O, putiing 11 = (1fT) L::':I(S, - q,(x"Õ))'(s, - q,(x"Õ)) and 

ihen minimizing S(O, 11) subject to \lI (O) = O. lteration of this process, upon convergence, 

yields maximum likel ihood estimates. See Gallant (1987) . 

As Gallani (1982) points oui the main objective of the econometr ic attempt to fit share 

equations focus on the assessment of elasticiiies of substituiion 

.. = ( C( )8
2
C(p,y) ) f (8C(p,y) 8C(p,y)) 

a" p, y 8 '8 8 8 pt p; p; p; . 
i,j=l, ... ,n 

and price ela iicities 1);; = S;a;;. Let E = (a;;) . The assumption of concaviiy in prices for 

C(p , y) is equivalent to E being negative semidefinite. Linear homogeneity implies that the 

share vector S must be an eigenvector of root zero. 

2.1 The Generalized Box-Cox Family of Cost Functions 

Berndt and I<haled (1979) present in detail the generalized Box-Cox parametric family of 

cost functions. Their formulaiion specif1es 

C(p,y) = (l + ÀG(p))I/~yil(Y'p) 

where 

G(p) 
n 1 n n 

Qo + 2:: Q;p;(À) + 22:: 2:: 'Y;;p;(À)p;(À) 
i= 1 i= 1 j= 1 
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o n 

f3(y,p) - f3 + 2 ln y + L </>i In Pi 
1=1 

2 >'/2 
Pi(À) = >:(Pi - 1) 

We have À > O and the matrix r = (-rii) is symmetric. Linear homogeneity in prices obtains 

if 
n 

L ai = 1 + ÀO'o 
1;1 

n À 
L "fii = -ai 
i=1 2 

When these restrictions are imposed, 

C>.(p,y) = U ~~"fiiP;/2p;/2) 1/>' yf3(~ .p) 
We obtain a bomothetic technology imposing additionally </>i = O for ali i. 

Familiar technologies in the Box-Cox family are the Square Root Quadratic (À=2) and 

the Generalized Leontief (À= l). The Translog cost function can be obtained writing 

G(p) = (C/yf3 )>' - 1 
À 

and taking the limit as À -+ O. The Translog cost function (in log form) is 

g(l,v) = 0'0 + 0"1 + ~I'rl +wv + ~V2 + tliV 
1= 1 

For the Translog cost functioll to be homogeneous in prices we must impose Li ai = O alld 

L i "fii = O. 

The Monte Carlo experiment of Gallant and Chalfant (1985) deals only with homothetic 

technologies. For these cost functions substit ution elasticities do not depend on output and in 

this context they take output to be unit. Expressions for share and substitution elasticities 

in this case are (À > O) 

(1) 

(2) 

i 'f. j (3) 

and for À = O 
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n 

Si - ai + L lijlj i=l) ... ,n (4) 
i=1 

u ·· = 1 + lii _ ~ i=l, ... ,n (5) " S2 S , . 
(Tij = 1 + lij i",j (6) 

SiSj 

Using the normalization rule C>.(p) = 1, given values [ar À, Uij, Pi, and Si, one can solve 

Equations (1)-(6) to find a unique set o[ lij. Later we use this fact to derive population 

technologies. In this exercise the specification of the substitution matrix Z; wiU imply values 

for Si. otice that with knowledge of lij we can use Equations (1) and (4) to generate share 

data. 

2.2 The Fourier Flexible Form 

Gallant (19 2) introduces the Fourier flexible form for the analysis of fador demand systems 

as follows. As before let x' = (l',v) where now li = Inpi + Inai and v = Iny + Inan +l. The 

constants a""" an +l are location quantities chosen such that x becomes a vector with ali 

coordinates strictly positive. One may take In ai = - mini In Pi + ( for any choice of ( > O. 

The functional form of the Fourier ftexible form with J( parameters is 

gf«(x, O) = Uo + b'x + ~x' Ex + t {uo" + t[Uj" cos(j7k~x) - Vj" SiIl(j7k~x)]} 
2 ,,=1 j=1 

with 
n 

E = _7
2 L uo"k"k~ 

Here uo, Uo", b, E, Uj", and Vj" are parameters, k" is a vector with integer components - a 

multi-index, and 7 is a scale parameter chosen to make each x a point of (O, 21f)n+ '. The 

vector () represents tbe collection of parameters written down in some order. In tbis papel' 

we use ( = 10-5 and 7 = 6/ maXi Xi' 

A deep philosophical difference between lhe Fourier flex ible {orm and other parametric 

cost functions lies in the dependence of f( on the sample size T. We emphasize this depen­

dence here writing f( = ! (T. Tbe Fourier flexible form gJ«x,()) approximates a true cost 

function in the Sobolev sense if f(T -+ 00 as T -+ 00 . This result poses some problems in 
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applications. lt is not clear in the literature of the subject how one should optimally choose 

1(T and therefore A, l, and the multi-indices k",. 

The Fourier flexible form will approximate a linear homogeneous cost function if we 

impose Li bi = 1 and keep only terms corresponding to multi-indices k", fo r which Li k"'i = O. 

The Fourier flexible form expenditure system is linear since shares can be expressed as 

Si = 8gKT(X,O)j8xi = g;O . Since also 82gKT (X,O)j8xi8x; = h;;O we can compute elasticities 

of substitution as 

h'O 1 
O"ii(O) = 1 + (g;Ô)2 - g;O and 

h~ · O 
0",;(0) = 1 + (g;O)(gjO) i # j. 

[t follows that if an estimator Ô is available, via seemingly unrelated regressions for example, 

we can estimate consistently the true elasticity of substitution O"i; by O"i,(Ô) and try to ap­

proximate its variance by \7'O"i,(Ô)fI\7O"i;(Ô) where fi is an estimate of the variance matrix of 

Ô. One can compute price elasticities estimators in an analogous manner. See Gallant (1982) 

and El Badawi, Gallant and Souza (1983) for more details on this approach. 

In our simulation study we use, as in Chalfant and Gallant (1985), two Fourier Aexible 

forms: one for which !(T = 13 (FFF13) and another for which 1(1' = 22 (FFF22). In both 

cases the true technology is a function of a price vector of dimension three. For FFF22 we 

take A = 6 and J = 1. The choices of multi-indices are k; = (O 1 - 1), k~ = (1 - 1 O), 

k; = (1 0- 1), k~ = (1 - 2 1), k~ = (1 1 - 2), and k~ = (2 - 1 - 1). The first three have 

norm two and the last three norm [ouro The norm of a multi-index is the sum of the absolute 

values of its components. The resulting (FFF22) form is 

( O) b' 1 'B g22 X, · = Uo + x + 2"x x 

+ UOl + 2{Ul cos[r(x2 - X3)] - VI sin[r(x2 - X3)]} 

+ U02 + 2{U2 cos[r(xl - X2)] - V2 sin[r(x, - X2)]} 

+ UQ3 + 2{u3cos[r(xl - X3)] - v3sin[r(xl - X3)]} 

+ UQ4 + 2{U4 cos[r(xl - 2X2 + X3)] - V4 sin[r(x, - 2X2 + X3)]} 

+ Uos + 2{us cos[r(xl + X2 - 2X3)] - Vs sin[r(xl + X2 - 2X3)]} 

+ U06 + 2{u6cos[r(2xl - X2 - X3)] - v6sin[r(2xl - X2 - X3)]} 

The parametrization above for FFF22 leads to a singular design matrix. To avoid this 
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we reparametrize the elements of B aod absorb the terms Uo<> in the constant term o On B 

we impose symmetry and homogeneity. 

The version FFF13 obtains from FFF22 reducing the order of the trigonometric poly­

nomial. Here we consider only multi-ind ices with norm two. T his is equi valent to set the 

coefficients UQ4, UOS,U06, U4, V4, us, Vs , U6, and V6 to zero in the express ion for FFF22. Also 

U02 

U03 

a.nd the parametrization is identifiable. 

3 Experimental Design 

U03 

UO I 

UO I 

Basing their cJaims on the empirical evidence Df past work Chalfaot ao Gallant (1985) argue 

that the preseoce of bias, aod its relative size, io the stat istical estimatioo of elasticities, 

may depeod on the oature of the t rue techoology, 00 the particular pattem of the elasticity 

matrix, aod on the magnitude of each elasticity being estimated. In this context they design a 

response surface experiment depending on two quaotitative factors: Technology - measured 

by variate À, and Elasticity - measured by variate a. The design space is the rectangle 

(O 2] x (O 2]. Each choice of (a À) defines a technology C~(pL, P2, P3) in the homothetic 

Box-Cox family for which the matrix of elast icities of substitution is E(a) . They use a total 

Df nine design points choseo as explained below. The idea is to fit the Fou rier flexible form 

to data generated according to each Df these "true" technologies and invest igate the nature 

of the response surface defined by the absolute biases resulting from the estimation processo 

Of particular concem is the presence of a ridge of increasing bias in any particular direction 

(a À) . They compute E(a) as follows. The own price elasticities are taken to be equal to -TJ 

for ali three prices. The diagonal elements of E(a) are then aiO = - TJ/Si. The oII diagonal 

elements have the saroe magnitude a and E has one of the three patterns 

a a a -a a 

1: 11: a 111 : a 

- a a 
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The actual pattern used for each combination (O" >' ) was chosen ran dornly. 

Given a value of O" # O, E is completely deterrnined by the placement of the negative 

slgn. We illust rate this construction when 

_..!L u O" s, 
E= O" _..!L -O" 

S 2 

U -O" _..!L 
S3 

It fo llows (from L Si = 1 and ES = O) that 

- 1/ + OS! + O"S2 + O"S3 = O 

-1/ + O" SI + US2 + - US3 = O 

-1/ + O"SI + -US2 + - OS3 = O 

- 01/ + SI + S2 + S3 = 1 

The solut ion for th is system is SI = 3/5, S2 = S3 = 1/5 and 1/ = 20"/5 . Thus for Pattern r 

-2 3 3 

3 -6 -3 

3 -3 -6 

For Patterns II and lIr we obtain, respectively, 

-6 3 -3 -6 -3 

3 -2 3 
O" 

and E(O") = 3" -3-6 

3 

3 

-3 3 -6 -3 3 -2 

otice that these three matrices a re negative definite with rank two. At th is poin t it is 

important to remark that when O" = O a random choice among Patterns r, lI , and lIr wa 

used to decide which share should have value 3/5. 

The design points in the factor space where chosen as follows . Consider first the central 

composite rotatable des ign described in Cochran and Cox (1957). This is a design commonly 

used in experimental statistics to approximate a response function by a quadratic formo The 

nine vectors (O - 12), (O O), (1 1), (O 12), (-11), (-1-1), (1-1), (12 O), and (-12 O) 

define the designo The transformation (~, YJf) maps the cent ral composite into the 

square [0,2J x [0,2J producing the new design points (0", >'): (1 O), (1 1), (1.70711 1.70711), 
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(1 2), (0.29289 1.70711), (0.29289 O) , (.29289), (1.70711 0.29289), (2 1), and (O 1). This is 

the layout we will use. We refer to these points as design points 1-9 respectively. Known 

technologies in the layout are the Translog - Design 1, Leontief - Design 9, Square Root 

Quadratic - Design 4, and Generalized Leontief - Designs 2 and . 

It is clear from Equations (1)-(6) of Section 2 and from the normalization rule C~(p) = 1 

at p = po that a design point (a, >. ) uniquely determines C~(p) with the choice E = (a). 

Chalfant and Gallant (1985) consider two price seri es to generate data in the Monte Carlo 

process o The idea is to mimic the behavior of expected and actual prices so that share data 

is simulated with expected prices and fit lo adual priccs . A lypical case of errors in var iables 

and non additive regression errors. The series of actual prices p, is generated accord ing to 

the modelln p, = (3+u" u, = RU'_ 1 + f" where (3' = (0.09760778 - 0.007215130.37572201), 

0.56627 0.055096 - 0.017574 

R = 0.13356 0.502859 0.129266 

- 0.14791 0.110825 0.934661 

and f, is a three dimensional multivariate normal random vedor with mean zero and variance 

v = F'F. Here 

F = 

- 0.00135824 -0.08386093 -0.00054760 

0.00067686 

- 0.01265727 

0.00017299 -0.02817099 

0.00206979 -O .00030284 

For Po we take exp((3). This is the price vector used to obtain tbe population technologies in 

Table 1. The (vector) stochastic process above was adapted by Chalfant and Gallant (1985) 

[rom a real price series studied in Berndl and Wood (1975). 

Following Huber (1981) J(r ~ T2/3 . In this context a basic sample of 25 observed prices 

is generaled lo fit FFF13 and extended to 48 to fit FFF22. With only two shares retained 

the number of effective observations in each case becomes 50 and 96 respedively. 

The series of expected prices p, is a fundion of observed prices p,. We take In(p, ) -

In (p,) + (, where (, = (3 * y,. Here y, is a multivariate normal random vedo r with mean zero 

and variance matrix oI . Shares are generated using the formula S;, = 8C~(p,)/8Pi which 

is Shephard's lemma. Chalfant and Gallant (1985) generate 5000 replications and set o to 
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0.1. This choice of a, in their case, allows estimation of elasticities with accuracy of three 

digits when the true technology is the Translog. Here we take 1000 Monte Carlo replicat ions. 

We achieve the same accuracy for the Tran log case with a = 0.01 for both fits (FFF13 and 

FFF22) . The number of replicat ions we choose is in accordance with the bootstrap literature, 

see Efron (1990) and Efron and Tibshirani (1993) , and keeps the simulat ion process at a P C 

manageable size. 

4 Simulation Results 

Our simulat ion study mimics the basic structure (model) of Chalfant and GaUant (1985). We 

use SAS - ETS to compute seerni ngly unrelated regressions, SAS - PRO C IML to compute 

standard errors of elastici t ies of subst itut ion and nonparametric density estimates, and SAS -

STAT to evaluate empirical distributions . In Subse t ion 4.1 we present our findings in 

regard to biases in est imat ion. Our discussion has more detail than that of Chalfant and 

Gallant (19 5) . In Subsection 4.2 we sbow our results regarding other dist ribu tional aspects. 

4 .1 Biases in the Estimation of Elasticities 

The variable of concern here is the absolute bias I aij - iJij I where aij is the true elasticity 

of subst itution and iJij is an average of 1000 seemingly unrelated estimates Ô-ij . 

Gen era l: Table 2 shows the evolu t ion of two summary statistics computed from the bas ic 

results reported in Félix Souza (1993). T bose are the average (over a;js) bias per tech­

nology (À) , identified with the design, and the average bias relative to the Translog which 

functions as a base case or control. The overall impression is that FFF13 has a better per­

formance than FFF22. The worst case for FFF13 is technology five wh ich on average shows 

a bias elose to 0.03. This is about eight t imes the bias we measure when we use FFF13 

and the data is generated accord ing to the Translog. For FFF22 two design points seem 

to be outliers. Technologies four and eight. The form FFF22 produces three bad estimates 

of elasticities in each of these cases leading to average biases of 0.08 and 0.14 respectively. 

These figures are approximately 45 and 77 times the average bias we measure when we fit 

FFF22 to data generated from the Translog. Chalfant (19 3) also reports an increase in bias 
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when using the FFF22 but our results are more dramatic. He attributes the misfit to errors 

in variables. In our case other sources of instabili ty may also be con founded in the processo 

Potential candidates are specification bias and multicollinearity. 

Analysis of Variance: The Analysis of Variance results a re shown in Tables 3, 4, and 5. 

The statistical findings confirm the visual impression from Table 2. In Table 3 we notice 

a highly signi ficant interaction between Models with two leveis - F'FF13 and FFF22 and 

Technology. 

Table 4 shows our findings for FFFl3. The overall F test does not indicate significant 

difTerences among technologies a lthough Dunneti's procedure (not shown) indicate a real 

difTerence (5% levei) between technology five and the Translog (control). 

In Table 5 we have A aVA for FFF22. The overall F test is sign ificant and Dunneti's 

procedure (not shown ) points to technologies four and eight as differing signifi cant ly (5% 

levei) from the control. 

R esponse Surface Analysis : Tables 6 and 7 show fits of a quadratic surface in À and u for 

FFF13 and FFF22 respectively. Model FFF13 passes the lack of fit test and t he stat ionary 

point is a saddle point outside the region under study. The overa ll results for FFF13 agree 

with Chalfant and Gallan t (19 5). Model FFF22 does not pass the lack of fit testo A ridge 

of maximu m response is observed in the direction of (u = 1.956 À = 1.292). Chalfant and 

Gallant (19 5) find difTerent results in this instance. 

4. 2 Distributional Aspects 

To study deviations from population probabilities we compute two measures of goodness of 

fito A measure we calJ X 2 which is the chi-square test statistic and the Shapiro- Wilk test 

statistic W. For model FFF13 the variable X2 measures the overall discrepancy from the fit 

of a t distribution with 39 df to observed ratios of the form t;j = (Ô";j - u;j)fs(Ô";j) where 

(Ô";J) is the seemingly unrelatcd regressions estimate of the standard error of Ô";j . For FFF22 

variable X2 measures a similar quant ity for the t distribution with 79 dr. We consider in 

both cases 14 nonoverlapping classes . af course these c1as es would be about the same if 

we had used the standard normal distribution. The Shapiro-Wilk test statistic W measures 

departure from normali ty when we consider only the variate â;j . 
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4.2 .1 Variable X2 

Gen eral: The empirical probabilities associated with tij in many cases dilfer markedly from 

tables of the t distribution. This fact is iUustrated in Exhibit 1 where densily estimates are 

reported for Design . With a few exceptions lhe pattern is typical of olher designs. 

Table 8 shows the evolulion of averages of In X2 per technology or design point. The 

path for FFF22 dominates indicating a better fit for FFF13 . Only three design points (5, 

6, and 9) show averages below common significance leveis. The Translog is a misfil for bolh 

functional forms. 

Analys is of Variance: As in the case for the absolute bias the analysis of variance for In X2 , 

in Table 9, seem to confirm the visual impressiono The in leract ion Model x Technology is not 

significant and in lhis conlexl we performed only a combined analysis. Dunnetl's procedure 

(nol shown) indicales real differences from lhe Translog only for design points five, six, and 

nine which are lhe technologies with acceplable leveis for X2 • 

R esponse Surface Analysis: Tables 10 and 11 show fits of a quadralic surface in À and 17 lo 

In X2
. FFF13 passes lhe lack of fil test and the slationary point (17 = 1.2 8618 À = 0.945635) 

is a maximum. This is dosesl to the Generalized Leontief. FFF22 does not pass the lack of 

fil test and a ridge of maximum response is found in lhe direction of (17 = 1.34 À = 1.94 ) 

which defines a technology dose lo the Square Root Quadratic. 

4.2.2 Variab le W 

General : The quantilies ô"ij show densily estimates much doser to normality then lhe tij · 

Exhibil 2 for Design 8 is typical. 

Table 12 shows the evolulion of avcrages of W per lechnology. The path for FFF22 

dominates lhe path for FFF13. For FFF22 only design points one and lwo show significanl 

average leveis. Design point eighl is an outl ier for FFF13 . The overall impression is thal lhe 

bias in the estimation of both 17ij and lhe standard error of S(Ô"ij), rather than lhe polynomial 

rate of dependence to lhe sample size, may be the cause for worse results with X2 

Analysis of Variance: The analysis of variance for variable W is reporled in Table 13. The 

interaction ModelxTechnology is nol significanl. Dunnett's procedure (not shown) indicale 

that lhe only dilference not real is between design points one and two. Again the control 
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treatment is the Translog technology. 

Response Surface Analysis: The fit is reported in Tables 14 and 15. Model FFF13 does 

not pass the lack of fit testo A ridge of rninimum response is found in the direction of design 

point two. Model FFF22 passes the lack of fit test and its stationary point is a minimum 

and has coordinates a = 0.9812826 and À = 0.871032. As with X2 we see that the direction 

of worst results is close to the Generalized Leontief. 

5 Conclusions 

The Fourier ftexible form seems to perform very weU for f(T = 13, particularly in regard 

to point estimation of elasticities. The inclusion of additional trigonometric terms seems to 

lead to unstable e t imates. The classical Wald test statistics based on seemingly u nrelated 

estimates do not follow a t-distribution. The better distributional results obtained with 

the Shapiro-Wilk test statistic, which properly centers and scales the estimates 17'h is an 

indication that the use of bootstrap techniques to correct for bias and to set confidence 

intervals will provide a more reliable statistical inference than the classical delta method. In 

general our analysis indicate that distributionalresults are particularly bad in the direction of 

Generalized Leontief cost functions. The discrepancies observed are too large to be attributed 

to errors in variable alone. 
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Exhibit 1: onparametric Density Estimates for the d istribution of t;j for Design 8. 

ormal Kernel. The Dashed Curve is the Standard Normal. 
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Exhibit 2: onparametric Density Estimates for the distribution of U;j for Design 8. 

ormal Kernel. The Dashed Curve is the ormal Density with Mean and Variance 

Computed from the Data. 
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Table 1. Populalion Technologies. for lhe Translog ao = 0.756928 , 0'1 = 0.191614, 

0'2 = 0.208386, and 0'3 = 0.6. 

Design Pattern 1'11 1'12 1'13 1'22 1'23 1'33 

1 1II 0.0800 -0.0800 O 0.0800 O O 

2 0.10 0.2294 0.1 94 0.04003 - 0.0665 0.0275 

3 1 0.0667 0.3142 0.2266 -0.0937 -0.0342 -0.0487 

4 l!l -0.0329 O 0.1495 -0.0406 0.1660 0.0566 

5 0.2699 0.1302 0.0939 0.0405 0.0142 0.0211 

6 III 0.7896 -0.2696 -0.3167 0.8143 -0.3216 1.1456 

7 -1.0095 0.80 6 0.7645 0.0401 -0.624 0.0358 

8 II -0.10 0.4588 -0.1263 -0.3626 0.3992 -0.0824 

9 II 0.1814 O O 0.6043 O 0.1374 
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Table 2. Average Absolute and Relative Biases for the Fourier Flexible Form . 

Absolute Absolute Relat ive Relative 

Design Bias Bias Bias Bias 

FFF13 FFF22 FFF13 FFF22 

1 0.00369950 0.001 189 1.0000 1.0000 

2 0.01527360 0.0232128 4.1286 12.7620 

3 0.00083742 0.0299361 2.2636 16.4584 

4 0.00730160 0.0 20313 1.9737 45.0994 

5 0.02919300 0.0181192 7.8911 9.9616 

6 0.00802730 0.0098951 2.169 5.4402 

7 0.00787500 0.0038115 2.1287 2.0955 

0.01153290 0.1398890 3.1174 76.9086 

9 0.00936490 0.0304001 2.5314 16.7135 
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Table 3: Analysis of Variance: Interaction Effects for Absolute Bias. 

Source df Sum of Squares Mean Square F Ratio Pr > F 

Model 1 0.01895627 0.01895627 14.32 0.0003 

Technology 8 0.05003558 0.00625445 4.73 0.0001 

Model x Technology 8 0.05057292 0.00632161 4.78 0.0001 

Error 90 0.11909705 0.00132330 

Corrected Total 107 0.23866182 
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Table 4: Analysis of Variance for FFF13 - Response is Lhe Absolutc Bias . 

Source 

Technology 

Error 

df Sum of Squares 

8 0.0026662 

45 

Corrected Total 53 

0.00963404 

0.01230033 

24 

Mean Square f RaLio Pr> f 

0.00033329 1.56 0.1651 

0.00021409 



Table 5: Analysis of Variance for FFF22 - Response is lhe Absolute Bias. 

Source df Sum of Squares Mean Square F Ralio Pr> F 

Technology 8 0.09794222 0.0122427 5.03 0.0002 

Error 45 0.10946300 0.00243251 

Corrected Total 53 0.20740522 
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Table 6: Response Surface Analysis - FFF13. umbers in (.) are standard errors. 10del is 

1 Bias 1= ao + alÀ + a2u + a3À2 + a4Àu + asu2. R2 = 0.1364. 

Source df Sum of Squares Mean Square F Ratio Pr> F 

Lack of Fit 3 0.000988 0.000329 1.539 0.2175 

Pure Error 45 0.009634 0.000214 

Total Error 48 0.010622 0.000221 

ao aI a2 a3 a4 as 

-0.005830 0.029217 0.011425 -0.007077 -0.010333 -0.002128 

(0.010519) (0.015778) (0 .015778) (0.007121) (0 .006073) (0 .007121) 

26 



Table 7: Response Surrace Analysis - FFF22. umbers in (.) are standard errors. Model is 

1 Sias 1= ao + alÀ + a2U + aJ À
2 + a4Àu + asu2. R2 = 0.2354. 

Source df Sum of Squares Mean Square F Ratio Pr> F 

Lack or Fit 3 0.049123 0.016374 6.731 0.000 

Pure Error 45 0.109463 0.002433 

Total Error 4 0.15 5 6 0.003304 

ao aI a2 aJ a4 as 

0.010201 0.027 47 -0.056332 -0.005336 0.00 950 0.037 4 

(0.040644 ) (0.060966) (0.060966) (0.027516) (0.023466) (0.027516) 
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Table : Averages for In X2 . 

Design FFF13 FFF22 

1 4.6946624 5.1636203 

2 4. 546326 5.1677325 

3 3.9233675 4.23 5643 

4 4.13 7512 6.3972947 

5 2.9973857 2.9 73962 

6 2.6377 92 2.6205318 

7 3. 100154 3.611 297 

4.7126976 5.6266261 

9 3.0075468 3.1578674 
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Table 9: Analysis of Variance: Interaction Effects for In X2
. 

Source df Sum of Squares Mean Square F Ratio Pr > F 

Model 1 5.864931 5.864931 4.12 0.0452 

Technology 8 103.234847 12.904356 9.07 0.0001 

Model x Technology 8 13.382641 1.672830 1.18 0. 3223 

Error 90 128.010129 1.422335 

Corrected Total 107 250.492547 

29 



Table 10: Response Surface Analysis - FFF13. Numbers in (.) are standard errors. Model 

is In X2 = ao + alÀ + a2u + a3À2 + a4Àu + asu2 R2 = 0.2163. 

Source df Sum of Squares Mean Square F Ratio Pr > F 

Lack of Fit 3 8.871097 2.957032 1.712 0.1781 

Pure Error 45 77.738425 1.727521 

Total Error 4 86.609522 1.804365 

ao aI a2 a3 a4 as 

1.760963 1.739 99 3.705639 -0.836075 -0.123121 -1.392659 

(0.949826) (1.424743) (1.424743) (0.643038) (0 .548381) (0.643038) 
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Table 11: Response Surface Analysis - FFF22. Numbers in (.) are standard errors. Model 

is In X2 = ao + alÀ + a2Q" + a3À2 + a4ÀQ" + a sQ"2. R2 = 0.3481. 

Source df Sum of Squares Mean Square F Ratio Pr > F 

Lack of Fit 3 37.166524 12.388841 11.090 0.0000 

Pure Error 45 50.271704 1.117149 

Total Error 48 87.43 22 1.821630 

ao aI a2 a3 a4 a s 

1.915438 O. 50512 4.156474 -.248192 0.129934 -1.636403 

(0.954359) (1.431543) (1.431543) (0.646107) (0.550999) (0 .646107) 
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Table 12: Averages for W. 

Design FFF13 FFF22 

1 0.9414173 0.9690227 

2 0.9460717 0.9648798 

3 0.9872592 0.9877892 

4 0.9838588 0.9852052 

5 0.9868368 0.9851 093 

6 0.9866263 0.9859878 

7 0.9875977 0.9884658 

8 0.9692697 0.9870367 

9 0.9849143 0.9870627 
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Table 13: Analysis of Variance: Interact ion Effects for W. 

Source df Sum of Squares Mean Square F Ratio Pr > F 

Model 1 0.0014 329 0.00148329 4.30 0.0411 

Technology 0.01744427 0.00218053 6.31 0.0001 

Model xTecbnology 8 0.002 436 0.00035546 1.03 0.4201 

Error 90 0.03107763 0.00034531 

Corrected Total 107 0.052 4 7 
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Table 14: Response Surface Analysis - FFF13. umbers in (.) are standard errors. Model 

is W = ao + al.À + a2C1 + a3.À2 + a.,.ÀC1 + asC12 R2 = 0.236 . 

Source df Sum of Squares Mean Square F Ratio Pr> F 

Lack of Fit 3 0.006684 0.002228 3.993 0.0132 

Pure Error 45 0.02510 0.00055 

Total Error 4 0.031793 0.000662 

ao aI a2 a3 a4 as 

1.003676 -0.039486 -0.0 2646 0.025174 -0.000274 0.03962 

(0.01 19 ) (0.027297) (0.027297) (0.012320) (0.010507) (0.012320) 
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