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Abstract

We use the simulation model of Chalfant and Gallant (1985) to investigate the At of a
Fourier Hexible form to a cost [unction when interest is to estimate elasticities of substi-
tution. The data is subject Lo errors in variables and the estimation method is seemingly
unrelated regressions. We use two approximating Fourier functional forms with 13 (FFF13)
and 22 (FFF22) parameters. The biases in point estimation are negligible for FFI'13. Biases
and large sample distributional approximations to classical t-statistics deteriorate when one
moves from FFF13 to FFF22. When estimates are properly centered and scaled a normal

approximation holds.



1 Introduction

The classical use of a flexible functional form in econometrics to fit an indirect utility func-
tion in consumer theory or a cost function in the theory of the firm usually involves the
specification of a model in a parametric family. For the theory of the firm one can achicve
this purpose specifying the cost function as C'(p,u) = f(ag + 8'w + (1/2)w'T'w, v) where the
function f is known, w is a vector of monotonically transformed prices p, and v 1s a function
of output y thal may depend on prices. The constant ag, the vector F, the matrix I', as
well as any other unknown constants appearing in the function v, are parameters. A variant
for consumer demand obtains dropping » and letting p be a veclor of income normalized
prices. Typical examples are the Translog cost (indirect utility) function and the generalized
Box-Cox family. See Berndt and Khaled (1979), Gallant (1981), and Gallant (1982) for more
details.

The objective of the econometric exercise of fitting an expenditure system is, usually,
to estimate elasticities. One can completely specily these quantities with knowledge of the
cost (indirect utility) function and its first and sccond order derivatives. From a statistical
poinl of view the estimation of elasticities simplifies if the response model is taken from a
parametric family and if the corresponding expenditure system is linear. This is the case of
the theory of the firm with the use of the Translog.

A parametric family of cost (indirect utility) functions is said to be flexible if it endows
the estimation procedure with nonparametric properties, that is, if we have a rcasonably
close approximation to target population quantities (strong consistency, for example) even if
the true response function is not a member of the family for any parameter choice. Relatively
recent studies indicate that none of the classical partametric families can achieve flexibility
in this sense. See White (1980), Guilkey, Lovell and Sickles (1983), Gallant (1981,1982), and
El Badawi, Gallant and Souza (1983). The reason for the lack of flexibility seems to be the
failure of a Taylor series expansion to provide a uniform approximation simultaneously to a
true response function and its first and second derivatives. In this context Gallant (1981) in-
troduces the Fourler flexible form for indirect utility functions. The version for cost functions

appeated in Gallant (1982). Essentially the [ourier flexible form superimposes a trigonomet-



ric polynomial to a Translog specification. The inclusion of sine and cosine terms endows
the Translog family with the properties of Fourier series expansions. It is well known that a
Fourier series can approximate a function in a Sobolev sense, that is, in a metric that allows
a uniform approximation simultaneously for a function and its derivatives. See IEdmunds
and Moscatelli (1977}. If the observational model used to approximate the factor (consumer)
demand system has additive and independent errors one can prove strong consistency of es-
timators of elasticities, conditionally on a realization of prices and other covariates, for any
of the standard statistical procedures. For this result to hold it is necessary to introduce a
dependence of the order of the approximating Fourier series on the sample size. The question
of asymptotic normality in a context where the number of parameters grow with sample size
is more delicate. Only recently this problem has been properly addressed and solved under
very special circumstances. These circumstances hypothesize factor demand systems and
multivariate least squares (seemingly unrelated regressions) with a known variance matrix.
Sufficient conditions for asymptotic normality require the growth ol the number of parame-
ters at a rate slower than any power of the sample size. See Gallant and Souza (1991) and
also Andrews (1994} for a flavor of the regularity conditions that may be involved in general
and for a strategy to prove consistency and asymplotic normality in semiparametric models.

It has been argued in the econometric literature that actual factor demand systems do
not show additive errors. The problem of errors in variables is intrinsic to such systems. Any
realistic application of seemingly unrelated techniques will face this condition which have not.
been contemplated yet in theoretical studies. In this context (‘halfant and Gallant (1983)
use a reoriented central composite design and Monte Carlo simulation to investigate the
performance of the Fourier flexible cost function. They restrict their atlention to the study
of statistical biases. Two variables define the factor space: a measure of elasticity intensity o
and a technology A chosen in the homothetic Box-Cox family. They fit a quadratic form in o
and A to the response surface of biases generated by elasticities of substitution estimated via
seemingly unrelated regressions. Here we extend Chalfant and Gallant’s study. We inves-
tigate distributional results and deepen the discussion on statistical biases. Our objective,
basing conclusions on Monte Carlo evidence, is to provide specific recommendations and

warnings in regard to the practical use of the Fourier flexible cost function. We organize



our presentation as follows. In Section 2 we introduce the family of cost functions we use
later. These are the general Box-Cox form and the Fourier flexible form. In Section 3 we
describe in detail the experiment of Chalfant and Gallant (1985). In Section 4 we present
our simulation results. We base our analysis on the absolute biases observed in estimates of
substitution elasticities and in two measures of goodness of fit: the chi-square test statistic

and the Shapiro-Wilk test statistic. Finally we summarize our findings in Section 5.

2 Cost Functions

Consider a production scheme involving n factor inputs. Let p’ = (p1,...,p.) be a veclor of
input prices and let ¢' = (qi,. .., qn) be the vector of input quantities. The total expenditure
resulting from the choice of quantity vector ¢ is p'q. Let y = f(py,....p.) be the production
function. The producer’s problem, given a vector of factor input prices p and a level of
output y, is to minimize total expenditure p’'q subject to f(p1,...,pn) = y. The minimum
expenditure C'(p, y) corresponding to the solution ¢(p,y) is the producer’s cost function. The
vector g(p,y) defines the set of factor demand functions.

The theory of the firm may impose regularity conditions on C(p,y). A minimal set of
regularity conditions will impose linear homogeneity in prices, monotonicity in prices and
outpul, and concavity in prices. A cost function ("(p.y) is said to be linear homogeneous if
C(rp,y) = 7C(p,y) for any 7 > 0, monotonic if V,,C(p,y) > 0, and concave if VZC(p,y) is
negative semidefinite. Concavity and linear homogeneity imply that V;C(p,y) has rank at
most n-1 with the price vector p being an eigenvector of root zero. A simplifying assumption
on functional form imposes homotheticity (a general form of constant returns to scale), that
is C(p,y) = h(p)g(y) where A(p) is linear homogeneous.

A linear homogeneous technology (cost function) will satisfy Shephard’s lemma, that is
¢(p,y) = V,C(p,y) or, equivalently, 5; = 0C(p,y)/0p;/C(p,y), where S; is the cost share of
the ith input factor. Typically the econometricians that deal with expenditure systems will
specify a parametric form for C'(p,y) and postulate an observational multivariate (possibly
nonlinear) statistical model s; = 0C(p,y)/8p:/Clp,y)+e€:, i=1...n-1. In this latter expression

s, represents an observed share, p are observed prices, and one share equation has been



removed to avoid a singular model.

In some instances is more convenient to express the cost function, prices, and output
in log (base e) form. If g({,v) represents the log cost function, { = Inp, and v = Iny, the
observational model becomes s, = dg(l,v) /0l + ¢

The most common statistical technique used in an attempt to determine C(p,y) or
gll,v) statistically is seemingly unrelated regressions. This estimation technique proceeds
as follows. Tor observation t=1..n let s} = (sy,...,: sta-1)t) be the vector of shares and
ry = (f},v,). We can write s, = ¢{z(,0) + ¢, where ¢ is an n-1 dimensional error vec-
tor and f is a parameter derived from a completely specified the cost (unction. Let
SH,V) =20 (sp — p(x,0))Y Vs, — d(2,,0)) and let W(#) = 0 be a set of restriclions
on #. The seemingly unrelated regressions estimate of # obtains first finding 6 that rmini-
mizes S(0, ) subject to ¥(f) = 0, putting V = (1/T) 5 (e — (i, 8)) (50 — @21, 8)) and
then minimizing S8, V) subject to ¥(8) = 0. Iteration of this process, upon convergence,
yields maximum likelihood estirnates. See Gallant (1987).

As Gallant (1982) points out the main objective of the econometric attempt to fit share
eguations focus on the assessment of elasticities of substitution

9*Clp,y dC(p,y) 9C (p, o
T (C(p’y)_ UpiUpj)) / ( _57).-“_@(';&_”) BT e
and price elasticities 7;; = S;0,,. Let & = (oy;). The assumption of concavily in prices for
C'{p,y) 1s equivalent to £ being negative semidefinite. Linear homogeneity implies that the

share vector S must be an eigenvector of roof zero,

2.1 The Generalized Box-Cox Family of Cost Functions

Berndt and Khaled (1979) present in detail Lhe generalized Box-Cox parametric family of

cost functions. Their formulation specifies
Clp,y) = (L + AC(p)) /Ay r)

where

(;( = (g ZGH Al - }L—ZZ ,p, pl3\
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P d
ﬁ(y,p) = -':-j-':_‘zl-ny-{_z‘f’:lnpi

=1

: 2
p(d) = 7 -1)

We have A > 0 and the matrix I' = (+,;) is symmetric. Linear homogeneity in prices obtains
if
i A 3

Zicrl =14 /\Q‘g Z‘_-',J; B EO{,— Zfr-'}‘ =0
=1

j=1 i=1

When these restrictions are imposed,

1/Ax
2 n i . e
Cilp,y) = (I 5 A,U.pl.‘ﬁpj/?) yPo)

=1 ji=1
We obtain a homothetic technology imposing additionally ¢; = 0 flor all 1.
IFamiliar technologies in the Box-Cox family are the Square Root Quadratic (A=2) and

the Generalized Leontief (A=1). The Translog cost function can be obtained writing

_(Cly") -1
G(p) = —

and taking the limit as A — 0. The Translog cost. function (in log form) is
g(l,v) =ap+a'l + %l'r‘l t w4 gvz -+ iliv
i=1
For the Translog cost function to be homogeneous in prices we must impose 3., a; = 0 and
27 = 0.

The Monte Carlo experiment of Gallant and Chalfant (1985) deals only with homothetic
technologies. For these cost functions substitution elasticities do not depend on output and in
this context they take outpuf, to be unit. Expressions for shares and substitution elasticities
in this case are (A > 0)

fl-"r = (2]9:\/2 Z?-ipjll‘) / ()'('\(pl y)) L= J-1 L i |')

=1

A
= — Lo~ ?_‘__ i — 1 - )
Ull - l /\ k5 fEI,SI;:E + 2}-'.,' El' = 1‘-..,??. (._,)
Af2 AJ2
P pj' - . . ;
oi; = 1—/\+’}‘U—Slq -{ ,.'II'(p,y) 2-‘/:_} (1)

and for A =10



=1

T L E
gy = ]"‘ﬁ—: -:"—l, \ (0]
gii = 14— i#£ 7 6)

Sen T \b)

Using the normalization rule (73 (p) = |, given values for A, o,,, p;, and S;, one can solve
Fquations (1)-(6) to find a unique set of 7,,. Later we use this fact to derive population
technologies. In this exercise the specification of the substitution matrix ¥ will imply values

for S;. Notice that with knowledge of 4,; we can use Equations (1) and (4) to generate share

data.

2.2 The Fourier Flexible Form

Gallant (1982) introduces the Fourier flexible form for the analysis of factor demand systems
as follows. As before let ' = (I',v) where now [, = lnp, + Ing; and v =Ilny 4+ Ina,,,. The
constants ay,...,a,,; are location quantities chosen such that x becomes a vector with all
coordinales strictly positive. One may take Ina;, = — min; In p; + ¢ for any choice of { > 0.
The functional form of the Fourier flexible form with K parameters is

1 A J

gz, 0) = ug + b'z 4 2J"H.?' -+ Z{wg, - Z[u_;-, cos{jrk! 7)) — v;, sin(77k! )1}
=1 1=1

with

Il
¥ ™
B=-7° L Upa Kok,

Here ug, woa, b, B, u;,, and v,, are parameters, k, is a vector with integer components - a
multi-index, and 7 is a scale parameter chosen to make each z a point of (0,27)"*'. The
vector # represents the collection of parameters written down in some order. In this paper
we nge { = 107° and T = G/nmx; T

A deep philosophical difference between the Fourier flexible form and other parametric
cost functions lies in the dependence of K on the sample size T. We emphasize this depen-
dence here writing A = K. The Fourier flexible form gg(z,#) approximates a true cost

function in the Sobolev sense if K+ — o0 as T' — oo. This result Poses somme [r['ul-]m:'.ﬁ mn
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applications. It is not clear in the literature of the subject how one should optimally choose
Ko and therefore A, J. and the multi-indices k.
The Fourier flexible form will approximate a linear homogeneous cost function il we
impose 3., b; = | and keep only terms corresponding to multi-indices &, for which ¥, k., = 0.
The Fourier flexible form expenditure svstem is linear since shares can be expressed as
Si = dgr,p(x,0)[0z; = gif. Since also gy, (z,0)[0x;0x; = b0 we can compute elasticities

ol substiiution as

By KO 1 0) = 1 hi;0 ,
gilt) = - g —i A (e = e - 1.
' (gi0) g " T o) T

It follows that if an estimator ¢ is available, via seemingly unrelated regressions for example,
we can estimate consistently the true elasticity of substitution oy; by oy, Iflﬁi ) and try to ap-
proximate its variance by V'eo, ,[Ej‘lQVahff}j where Q is an estimate of the variance matrix of
. One can compute price elasticities estimators in an analogous manner. See Gallant (1982)
and El Badawi, Gallant and Souza (1983) for more details on this approach.

In our simulation study we use, as in Challant and Gallant (1935), two Fourier Hexible
forms: one for which K¢ = 13 (FFF13) and another for which Ky = 22 (FI'F22). In both
cases the true technology is a [unclion of a price vector of dimension three. For FI'F22 we
take A = 6 and J = 1. The choices of multi-indices are k] = (01 = 1), &}, = (1 — 1 0},
B=((10-1),%k=(01—-21),kk=(11-2),and kg = (2 — 1 —1), The first three have
norm two and the last three norm four. The norm of a multi-index is the sum of the absolute

values of its components. The resulting (FFF22) form is

gaa(z,0) = wg+br+ -2'Bzx

L]

L

+ ug + 2{uy cos[r(zy — z3)] — vy sin[r(z2 — za)]}
+ ugg + 2{uz cos[r(z; — x3)] — vy sin[r(z; — x2)]}
+  uga + 2{uscos[r(z, — z3)] — vasin[r(z; — z3)]}
toq + 2{wq cos[t(zy — 225 + z3)] — vy sinf[r(zy — 2, + x4)]}

+  ugs + 2{us cos[r(zy + 2 — 2x3)| — vssin|T(zy + T2 — 223)]}

Fougs + 2{us L'|_:-.~.'[.—|:_E.."; — 19 — I3)| — vesin[r(2z; — 2, — .r'-_1‘!|}

The parametrization above for FFIF22 leads 1o a singular design matrix. To avoid this



we reparametrize the elements of B and absorb the terms wug, in the constant term. On B
we impose symmetry and homogeneity.

The version FFF13 obtains from FFF22 reducing the order of the trigonometric poly-
nomial. Here we consider only multi-indices with norm two. This is equivalent to set the

coeflicients wuqq, vos,uos, ta, U4, Us, Us, Ug, and vg to zero in the expression for FFF22. Also

—Upz — Upg gy Up3
— _ 2
B = -1 Up2 —Up) — Up2 UQ1
Uo3 Ugy —Ugy — Up3

and the parametrization is identifiable.

3 Experimental Design

Basing their claims on the empirical evidence of past work Chalfant an Gallant (1985) argue
that the presence of bias, and its relative size, in the statistical estimation of elasticities,
may depend on the nature of the true technology, on the particular pattern of the elasticity
matrix, and on the magnitude of cach elasticity being estimated. In this context they design a
response surface experiment depending on two quantitative factors: Technology - measured
by variate A, and Elasticity - measured by variate 0. The design space is the rectangle
0 2| x [0 2]. Each choice of (¢ A) defines a technology Ci(pi,p2,pa) in the homothetic
Box-Cox family for which the matrix of elasticities of substitution is L(c). They use a total
of nine design points chosen as explained below. The idea is to fit the Fourier flexible form
to data generated according to each of these “true” technologies and investigate the nature
of Lthe response surface defined by the absolute biases resulting from the estimation process.
Of particular concern is the presence of a ridge of increasing bias in any particular direction
(¢ A). They compute L(o) as follows. The own price elasticities are taken to be equal to —7
for all three prices. The diagonal elements of ¥(g) are then iy = —n/S;. The off diazonal

elements have the same magnitude ¢ and ¥ has one of the three patierns

[2E] ag g J11 g =g a, —a o
I: o on —0 1I: o Ox O HIV| -0 o9 o
c —o o -¢ o om 0 o 0O



The actual pattern used for each combination (¢ A) was chosen randomly.
Given a value of ¢ # 0, ¥ is completely determined by the placement of the negative

sign. We illustrate this construction when

T [2) a
Yy = = _
(22 5, o
— .
o (2 5,

It follows (from > .5; =1 and %5 = 0) that

-7 4+ 05 + oS5 + @55 =0
) T + o5 + o5 + —-a5 = 0
- + o5 + -5 + 05 = 0
=07 + 5+ S5+ 5 =1

The solution for this system is S; = 3/5, S, = 53 = 1/5 and n = 20/5. Thus for Pattern |

2 3 3

a
E(o)=§ 3 —6 —3
3 -3 —6

-6 3 -3 6 -3 3
o

S(o) = 3 3 —2 3 and E(o)==1] -3 -6 3

-3 3 —6 -3 3 =2

Notice that these three matrices are negative definite with rank two. At this point it is
important to remark that when ¢ = 0 a random choice among Patterns I, II, and III was
used to decide which share should have value 3/5.

The design points in the factor space where chosen as follows. Consider first the central
composite rotatable design described in Cochran and Cox (1957). This is a design commonly
used in experimental statistics to approximate a response function by a quadratic form. The
nine vectors (0 —v/2), (00), (11), (0v2), (-11), (=1-1), 1=1), {v/20), and (—/2 0)
define the design. The transformation (%{—5, —4\'/?) maps the central composite into the

square [0,2] x [0, 2] producing the new design points (¢, A): (1 0), (1 1), (1.70711 1.70711),
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(1 2), (0.29289 1.70711), (0.29289 0), (.29289), (1.70711 0.29289), (2 1), and (0 1). This is
the layout we will use. We refer to these points as design points 1-9 respectively. Known
technologies in the layout are the Translog - Design |, Leontief - Design 9, Square Root
Quadratic - Design 4, and Generalized Leontief - Designs 2 and 8.

It is clear from Equations (!)-(6) of Section 2 and from the normalization rule Cy(p) = 1
al p = pp that a design point (o, A) uniquely determines C,(p) with the choice & = ¥(o).

Chalfant and Gallant (1983) consider two price series to generate data in the Monte Carlo
process. The idea is to mimic the behavior of expected and actual prices so that share data
is simulated with expected prices and fit to aclual prices. A typical case of errors in variables
and non additive regression errors. The series ol actual prices p, is generaled according to

the model Inp, = B+ w,, v, = Ru,_y + ¢,, where 3" = (0.09760778 —0.00721513 0.37572201),

0.56627 0.055096 —0.017574
R= 0.13356 0.502859  0.129266
—-0.14791 0.110825  0.934661

and ¢, 15 a three dimensional multivariate normal random vector with mean zero and variance

V = F'F. Here

—0.00135824 —0.08386093 —0.00054760
F= 0.00067686  0.00017299 —0.02817099
—0.01265727  0.00206979 —0.00030281

For py we take exp(f). This is the price vector used to obtain the population technologies in
Table 1. The (vector) stochastic process above was adapted by Chalfant and Gallant (1985)
from a real price series studied in Berndt and Wood (1975).

Following Huber (1981) K7 = T%/3. In this context a basic sample of 25 observed prices
is generated to fit FFFF13 and extended to 48 to fit FFI"22. With only two shares retained
the number of effective observations in each case becomes 50 and 96 respectively.

The series of expected prices p, is a funclion of observed prices p,. We take In(p,) =
In(p) + {; where (, = 3xy,. Here y, is a rmultivariale normal random vector with mean zero
and variance matrix af. Shares are generated using the formula s; = 9C(p,)/dp; which

is Shephard’s lemma. Chalfant and Gallant (1985) generate 5000 replications and set « to
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0.1. This choice of «, in their case, allows estimation of elasticities with accuracy of three
digits when the true technology is the Translog. Here we take 1000 Monte Carlo replications.
We achieve the same accuracy for the Translog case with « = 0.01 for both fits (FFI'13 and
FFF22). The number of replications we choose is in accordance with the bootsirap literature,
see Efron (1990) and Efron and Tibshirani (1993), and keeps the simulation process at a PC

manageable size.

4 Simulation Results

Our simulation study mimics the basic structure (model) of Challant and Gallant (1985). We
use SAS - ETS to compute seemingly unrelated regressions, SAS - PROC IML to compule
standard errors of elasticities of substitution and nonparametric density estimates, and SAS -
STAT to evaluate empirical distributions. In Subsection 4.1 we present our findings in
regard to biases in estimation. QOur discussion has more detail than that of Chalfant and

Gallant (1985). In Subsection 4.2 we show our results regarding other distributional aspects.

4.1 Biases in the Estimation of Elasticities

The variable of concern here is the absolute bias | ;; — y; | where o;; is the true elasticity
of substitution and &;; is an average of 1000 seemingly unrelated estimates &,;.

General: Table 2 shows the evolution of two summary statistics computed from the basic
results reported in Félix Souza (1993). Those are the average (over o;s) bias per tech-
nology (A}, identified with the design, and the average bias relative to the Translog which
functions as a base case or control. The overall impression is that FFF13 has a better per-
formance than FEFEF22. The worst case for FFF13 is technology five which on average shows
a bias close to 0.03. This is about eight times the blas we measure when we use FFF13
and the data 1s generated according to the lranslog. For I'FF22 two design points seem
to be outliers. Technologies four and eight. The form FFF22 produces three bad estimates
of elasticities in each of these cases leading to average biases of 0.08 and 0.14 respectively.

These figures are approximately 45 and 77 times the average bias we measure when we fit

FFF22 to data generated from the Translog. Chalfant (1983) also reports an increase in bias

11



when using the FIFI'22 but our results are more dramatic. He attributes the musfit to errors
in variables. In our case other sources of instability may also be confounded in the process.
Potential candidates are specification bias and multicollinearity.

Analysis of Variance: The Analysis of Variance results are shown in Tables 3. 4. and 5.
The statistical findings confirm the visual impression from Table 2. In Table 3 we notice
a highly significant interaction between Models with two levels - FFF13 and FIFFF22 and
Technology.

Table 4 shows our findings for FI'F'I3. The overall I test does not indicate significant
differences among lechnologies although Dunnett’s procedure (not shown) indicate a real
difference (5% level) between technology five and the Iranslog (controt).

In Table 5 we have ANOVA for I'FF22. The overall F test is significant and Dunnett’s
procedure (not shown) points to technologies four and eight as differing significantly (5%
level) from the control.

Response Surface Analysis: Tables 6 and 7 show fits of a quadratic surface in A and o for
FIFF13 and FIFF22 respectively. Model FFIF13 passes the lack of fit test and the stationary
point is a saddle point outside the region under study. The overall results for FIF'F13 agree
with Chalfant and Gallant (1985). Model FFI'22 does not pass the lack of fit test. A ridge
of maximum response is observed in the direction of (¢ = 1.956 A = 1.292). Chalfant and

Gallant (1985) find different results in this instance.

4.2 Distributional Aspects

To study deviations from population probabilities we compute two measures of goodness of
fit. A measure we call X? which is the chi-square test statistic and the Shapiro-Wilk test
statistic W. For model FFF13 the variable X* measures the overall discrepancy from the fit
of a t distribution with 39 df to observed ratios of the form ¢;; = (Gi; — oi;)/s(8i;) where
s{4;) is the seerningly unrelated regressions estimate of the standard error of 6y;. For FFI722
variable X? measures a similar quantity for the t distribution with 79 df. We consider in
both cases 14 nonoverlapping classes. Of course these classes would be about the same if
we had used the standard normal distribution. The Shapiro-Wilk test statistic W measures

departure from normality when we consider oulv the variate &;;.
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4.2.1 Variable X?

General: The empirical probabilities associated with ¢;; in many cases differ markedly from
tables of the t distribution. This fact 1s illustrated in Exhibit 1 where density estimates are
reported for Design 8. With a few exceptions the pattern is typical of other designs.

Table 8 shows the evolution of averages of In X? per technology or design point. The
path tor FFF22 dominates indicating a better fit for FFF13. Only three design points (5,
6, and 9) show averages below cornmon significance levels. The Translog is a misfit for both
functional forms.

Analysis of Variance: As in the case for the absolute bias the analysis of variance for In X2,
in Table 9, seem to confirm the visual impression. The interaction Modelx Technology is not
significant and in this context we performed only a combined analysis. Dunnett’s procedure
(not shown) indicates real differences from the Translog only for design points five, six, and
nine which are the technologies with acceptable levels for X*.

Response Surface Analysis: Tables [0 and 11 show fits of a quadratic surfacein A and o to
In X%, FIF13 passes the lack of fit test and the slationary point (o = 1.288618 X = 0.945635)
is a maximum. This is closesi to the Generalized Leontlief. FI'F22 does not pass the lack of
fit test and a ridge of maximum response is found in the direction of {0 = 1.34 A = 1.94 )

which defines a technology close to the Square Root Quadratic.

4.2.2 Variable W

General: The quantities &;; show density estimates much closer to normality then the f;,.
[Exhibit 2 for Design 8 1s typical.

Table 12 shows the evolution of averages of W per technology. The path for FI'['22
dorninates the path for FI'F13. For FEF22 only design points one and two show significant
average levels. Design point eight is an outlier for 'IF'F'13. The overall impression is that the
bias in the estirmation of both o,; and the standard error of s(;;}, rather than the polynomial
rale of dependence to the sample size, may be the cause for worse resulls with X2,
Analysis of Variance: The analysis of variance for variable W is reported in Table 13. The
interaction Modelx Technology is not significant. Dunnett’s procedure (not shown) indicate

that the only difference not real is between design points one and two. Again the control
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treatment is the Translog technology.

Response Surface Analysis: The fit is reported in Tables 14 and 15. Model FFF13 does
not pass the lack of fit test. A ridge of minimum response is found in the direction of design
pomnt two. Model FFF22 passes the lack of fit test and its stationary point is a minimum
and has coordinates ¢ = 0.9812826 and ) = 0.871032. As with X? we see that the direction

of worst results is close to the Generalized Leontief.

5 Conclusions

The Fourier flexible form seems to perform very well for K+ = 13, particularly in regard
to point estimation of elasticities. The inclusion of additional trigonometric terms seems to
lead to unstable estimates. The classical Wald test statistics based on seemingly unrelated
estimates do not follow a t-distribution. The better distributional results obtained with
the Shapiro-Wilk test statistic, which properly centers and scales the estimates &y;, is an
indication that the use of bootstrap technigues to correct for bias and to set confidence
intervals will provide a more reliable statistical inference than the classical delta method. In
general our analysis indicate that distributional results are particularly bad in the direction of
Generalized Leontief cost funclions. The discrepancies observed are too large to be attributed

to errors in variable alone.
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I<xhibit 1: Nonparametric Densily Fstimates for the distribution of ¢, for Design .

Normal Kernel. The Dashed Curve is the Standard Normal.
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Exhibit 2: Nonparametric Density Estimates for the distribution of &,; for Design 8.
Normal Kernel. The Dashed Curve is the Normal Density with Mean and Variance

(‘omputed from the Data.
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Table 1. Population Technologies. For the Translog ag = 0.756928, ey = (.191614,

vy = 0.208386, and a4 = 0.6.

Design Pattern Y1 Y12 13 Y23 Y23 a3
i 111 0.0800 -0.0300 O_UESUU o 0 0
2 1 0.1088  0.2294 0.1894 0.04003 - 0.0665 0.0275
3 [ 0.0667 0.3142  0.2266 -0.0937 -0.0342 -0.0487
4 [ -0.0329 0 0.1495 -0.0406 0.1660 0.0566
5 [ 0.2699 0.1302 0.0939 0.0405 0.0142 0.0211
6 1 0.7896 -0.2696 -0.3167 0.8143 -0.3216 1.1456
7 [ -1.0095  0.8086  0.7645  0.0401 -0.6248  0.0358
8 11 -0.1088  0.4588 -0.1263 -0.3626  0.3992 -0.0824

9 I 0.1814 0 0 0.6043 0 0.1374

21



Table 2. Average Absolute and Relative Biases for the Fourier Flexible Form.

Absolute Absolute Relative Relative

Design Bias Bias Bias Bias

FFF13 FFF22 FFIF13  FFF22
—l ‘0.0}569950 0-.0018189 1.0000  1.0000
2 0.01527360 0.0232128 4.1286  12.7620
3 0.00083742 0.0299361 2.2636  16.4584
4 0.00730160 0.0820313 1.9737 45.0994
5 0.02919300 0.0181192 7.8911 9.9616
6 0.00802730 0.0098951  2.1698  5.4402
7
8
9

0.00787300 0.0038115  2.1287 2.0955
0.01153290 0.1398890  3.1174  76.9086
0.00936490 0.0304001 2.5314  16.7135
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Table 3: Analysis of Variance: Interaction ffects for Absolute Bias.

0.23866182

Source df  Sum of Squares Mean Square I Ratio Pr > I
- Model 1 U.Ult".-'.]'ﬁﬁ'.%'_.f 0.01895627 14,32 0.0003-

Technology 8 0.05003558 0.00625445 4.73  0.0001

Modelx Technology 8 0.05057292 0.00632161 4.78  0.0001

Firror 90 0.11909705 0.00132330

Corrected Total 107




Table 4: Analysis of Variance for FFF13 - Response is the Absolute Bias.

Source df

Technology 8
[irror 45

Corrected Total 53

Sum of Squares Mean Square ¥ Ratio Pr> F

0.00266628
0.00963404
0.01230033

0.00033329
0.00021409

L

1.56

0.1651



Table 5: Analysis of Variance for FI'F22 - Response is the Absolute Bias.

Source df  Sum of Squares Mean Square F Ratio Pr>F
Technology 8 0.09794222 0.01224278 5.03 0.0002
Error 45 0.10946300 0.00243251

Corrected Total 53 0.20740522




Table 6: Response Surface Analysis - FFF13. Numbers in (.) are standard errors. Model is

| Bias |= ag + a1 A + a30 + aaA? + agho + az0®. R* = 0.1364.

Source df Sum of Squares Mean Square I Ratio Pr>F
Lack of Fit 3 0.000958 (.000329 1.539 0.2175
Pure Error 43 0.009634 0.000214

Total Error 48 0.010622 0.000221

ag iy iy ay ay as
-0.005830 0.029217 0.011425 -0.007077 -0.010333  -0.002128
(0.010519)  (0.015778)  (0.015778) (0.007121)  (0.006073) (0.007121)
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Table 7: Response Surface Analysis - FFF22, Numbers in (.) are standard errors. Model is

| Bias |= ag + a1 A + @20 + asA? + aghe + as0?. R? = 0.2354.

Source df Sum of Squares Mean Square F Ratio Pr>F
Lack of Fit 3 0.049123 0.016374 6.731 0.0008
Pure Error 15 0.109463 0.002433

Total Error 48 0.158586 0.003304

ag ay i, as a4 s
0.010201 0.027847 -0.056332 -0.005336 0.008950  0.037884
(0.040644)  {0.060966) (0.060966) (0.027516)  (0.023466) (0.027516)

|3
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Table 8: Averages for In X?.

Design

FFF13

FFF22

1

o FES el [

-

Y

4.6946624
4.8546326
3.9233675
4.1387512
2.9973857
2.6377892
3.8100154
4. 7126976
3.0075468

5.1636203
5.1677325
4.2385643
6.3972947
2.9873962
26205318
3.6118297
5.6266261
3.1578674

28



Table 9: Analysis of Variance: Interaction Effects for In X2,

Source df  Sum of Squares Mean Square F Ratio Pr> ¥
Model 1 5.864931 5.864931 412 0.0452
Technology 8 103.234847 12.904356 9.07 0.0001
Modelx Technology 8 13.382641 1.672830 1.18  0.3223
Error 90 128.010129 1.422335

Corrected Total 107 250.492547
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Table 10: Response Surface Analysis - FFF13. Numbers in {.) are standard errors. Model
s InX? = ag + a1 A + ap0 + az)? + agho + ago®. R? = 0.2163.

Source df Sum of Squares Mean Square F R;io - Pr>F
Lack of Fit 3 8.871097 ‘2.957032_ 1.';2 - 0.1781
Pure Error 45 77.738425 1.727521

Total Error 48 86.609522 1.804365

do - a; o a; o a3 ay as
1.760963 1.739899 3.705639 -0.836075 -0.123121 _-1.39'2659

(0.949826)  (1.424743)  (1.424743) (0.643038)  (0.548381) (0.643038)
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Table 11: Response Surface Analysis - FFF22. Numbers in (.) are standard errors. Model

is In X% = ag + a1 A + @20 + a3A? + ag Ao + ase2. R? = 0.3481.

Source df Sum of Squares Mean Square F Ratio Pk
Lack of Iit 3 37.166524 12.388841 11.090 0.0000
Pure Error 45 50.271704 1.117149
Total Error 48 87.438228 1.821630

_a“ ) aj a; as ay as
1.915438 0.850512 4.156474 -.248192 0.129934¢  -1.636403
(0.954359)  (1.431543) (1.431543) (0.646107)  (0.550999) (0.646107)
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Table 12: Averages for W.

Design  FIFF13 FFF22
[ 0.9414173 0.9690227
2 0.9460717 0.9648798
3 0.9872592 0.9877892
4 0.9838588  0.9852052
5 0.9868368 0.9851093
6 0.9866263 0.9859878
7 0.9875977  0.9884658
8 0.9692697 0.9870367
9 0.9849143 0.9870627



Table 13: Analysis of Variance: Interaction Effects for W.

Source df Sum of Squares Mean Square F Ratio Pr>F
Model 1 0.00148329  0.00148329 14.30  0.0411
Technology 8 0.01744427 0.00218053 6.31  0.0001
Model x Technology 8 0.00284368 0.00035546 1.03  0.4201
Error 90 0.03107763 0.00034531

Corrected Total 107 0.05284887
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Table 14: Response Surface Analysis - FFFF13. Numbers in (.) are standard errors. Model

s W =ag+ a )+ a0 + a3\* + a, Ao + azo®. R? = 0.2368.

Source df Sum of Squares Mean Square [ Ratio Pr>F
Lack of Fit 3 0.006684 0.002228 3.993 0.0132
Pure Error 45 0.025108 0.000558

Total Error 48 0.031793 0.000662

g ay az ay aj as
1.003676 -0.039486 -0.082646 0.025174 -0.000274  0.039628

(0.018198)  (0.027297) (0.027297) (0.012320)  (0.010507) (0.012320)

3
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