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ABSTRACT 

JUNQUEIRA, Vinícius Silva, D.Sc., Universidade Federal de Viçosa, June, 
2018. Genomic information for breed determination, multibreed 
evaluation, and estimation of variance components in large populations. 
Advisor: Paulo Sávio Lopes. Co-advisors: Fernando Flores Cardoso and 
Fabyano Fonseca e Siva. 
 

The knowledge on breed composition is of major importance under design of 

breeding schemes. With this respect, the estimation of such parameters must 

be as accurately as possible. Currently, most of genetic evaluation programs 

has been predicting breed composition based on pedigree datasets; but, such 

estimations only accounts for the expected (allele frequency) contributions 

across ancestors After the development and establishment of single 

nucleotide polymorphism (SNP) genotyping platforms on the last decade, an 

interest in genetic diversity studies has arisen and especially the study of 

individuals’ origin. The objective of the present study was to evaluate the 

minimum required number of ancestry informative markers necessary to 

differentiate Hereford, Nelore, Brahman and Braford breeds genotyped with 

777 K Illumina Bovine HD Bead Chip. In addition, we also compared the effects 

of different panels size on breed composition inference under different AIMs 

methods. To that, it was used the high-density Illumina Bovine HD BeadChip 

with more than 777 K SNPs to elucidate the structure of Hereford, Nelore, 

Brahman and Braford populations. Three different ancestry informative marker 

methods were used to distinguish such populations. Additionally, random 

marker selection was considered. Admixture software was used to infer breed 

composition using very low-density SNP panels assembled with AIMs. Our 

results suggest that is possible to assign individuals to populations with high 

confidence using less than 8 SNP markers selected per breed. Although 

millions of SNP markers have been identified, only few of them are needed to 

accurately infer ancestry in a cost-effective manner. Pedigree information is by 

nature incomplete and commonly not well established simply because many 

of the true genetic ties existent between individuals are not a priori known or 

they can be even wrong. Genomic era brought new opportunities when 

calculating relationships between individuals. The challenge under genomic 

approaches is the correct definition of genetic base by the use of pedigree and 
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genomic data. Genetic base may change as more individuals are included and 

are inadequately defined if populations are genetically structured. Metafounder 

concept relies on the definition of pseudo-individuals that describes some level 

of within and/or across genetic relationship between base population. The 

purpose of this study was to evaluate metafounder theory to estimate breeding 

values and the predictive ability under a single-step approach for a multibreed 

population. Three different scenarios were adopted to estimate variance 

components and to compute breeding values: pedigree-based model, single-

step GBLUP and single-step GBLUP with addition of metafounders. A total of 

28 different metafounders were included in the ssGBLUP+metafounder model. 

In general, it was possible to note that genomic models were able to greater 

ability to predict the future performance. Among genomic models, the inclusion 

of metafounder information could increment even more the predictive ability 

under cross-validation approach. Restricted maximum likelihood (REML) is a 

popular method for parameter estimation. Because it uses the mixed model 

equations, it is resistant to selection bias and efficient implementations are 

currently available. When genomic information is available, two versions of 

REML may be applicable. When only genotyped animals have phenotypes, 

genomic REML can be applied with a genomic relationship matrix. When only 

a fraction of animals is genotyped, a single-step REML is applicable. In 

general, it is of interest to include many genotyped animals in parameter 

estimation and into evaluations, to account for genomic selection or pre-

selection. The aim of this study was to investigate to what extent generations 

truncation affects estimates for a simulated population under selection. The 

use of less generations reduced the ability of pedigree-based model in 

estimating the benchmark heritability (0.30). The decrease in heritabilities 

based on genomic information was less than using only pedigree relationships. 

Genomic models provided greater correlations than pedigree-based model; on 

average 25 points. Single-step genomic models do not require a deeper 

pedigree relationship to estimate reliable variance components and breeding 

values. The use of APY algorithm does not affect the estimation of variance 

components. An extra of 2 ungenotyped generations are sufficient to compute 

reliable variance components; as well as breeding values and accuracies. 
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RESUMO 

JUNQUEIRA, Vinícius Silva, D.Sc., Universidade Federal de Viçosa, junho de 
2018. Informações genômicas para determinação racial, avaliação 
genética multirracial e estimação de componentes de variância em 
grandes populações. Orientador: Paulo Sávio Lopes. Coorientadores: 
Fernando Flores Cardoso e Fabyano Fonseca e Silva. 
 

A disponibilidade de uso de informações genômicas trouxe grandes 

oportunidades de aumento do ganho genético em sistemas produtivos de 

gado de corte. Apesar dos benefícios já conhecidos, implementação em larga 

escala nas condições nacionais ainda é um grande desafio principalmente 

pelo relativo alto custo de genotipagem. Uma alternativa economicamente 

viável é o desenvolvimento de painéis de marcadores SNP customizados para 

objetivos de melhoramento estrategicamente estabelecidos para 

características de interesse. A implementação dessa proposta tem maior 

impacto para os animais jovens. O objetivo desse estudo foi identificar o 

menor número necessário de marcadores do tipo SNP para diferenciar 

animais das raças Hereford, Nelore, Brahman e Braford genotipados com o 

painel 777K chip HD para bovinos. Adicionalmente, comparou-se o impacto 

na predição da proporção racial utilizando-se diferentes painéis reduzidos de 

marcadores do tipo SNP. Para isso, foram utilizados quatro diferentes 

métodos para a seleção de marcadores altamente informativos para a 

diferenciação racial. O software Admixture foi utilizado para os cálculos de 

proporção racial utilizando os painéis customizados. Os resultados 

observados nesse estudo sugerem a possibilidade de definir indivíduos às 

respectivas raças utilizando um painel de 24 marcadores do tipo SNP (isto é, 

8 marcadores por raça pura). Informações de pedigree são por natureza 

incompletas e comumente não são bem definidas porque varias das ligações 

genéticas existentes não são conhecidas. A genômica trouxe grandes 

oportunidades para o cálculo do parentesco entre os indivíduos de uma 

população. Um dos principais desafios em implementações genômicas é a 

correta definição da população referência para o uso simultâneo das 

informações de pedigree e genômica. O conceito de metafundadores é 

baseado na definição de pseudo-indivíduos que descrevem os 

relacionamentos entre e dentre os indivíduos da população base. O objetivo 
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desse estudo foi avaliar os impactos do uso de metafundadores ao estimar 

valores genéticos e sua habilidade preditiva utilizando a metodologia single-

step GBLUP (ssGBLUP) em uma população multirracial. Três diferentes 

cenários foram adotados nesse estudo para a estimação de componentes de 

variância e predição dos valores genéticos: BLUP tradicional, ssGBLUP e 

ssGBLUP com inclusão de metafundadores. Um total de 28 metafundadroes 

foram definidos no modelo ssGBLUP+metafundadores. De forma geral, os 

modelos genômicos apresentaram maior habilidade preditiva. Sendo o 

modelo com inclusão de metafundadores o que apresentou maior habilidade 

preditiva. O método da máxima verossimilhança restrita (REML) é um método 

comumente utilizado para a estimação de componentes de variância. Por ser 

implementado em modelos mistos, apresenta estimativas corrigidas para 

efeitos de seleção. De forma geral, todos os animais genotipados são 

utilizados nos cálculos para a predição dos valores genéticos. O objetivo 

desse estudo foi avaliar quantas gerações são necessárias para acurada 

estimação de componentes de variância com o algoritmo para animais 

provados e jovens (APY) em uma população simulada com restrições de 

seleção. O uso de menor número de gerações reduziu a habilidade do modelo 

BLUP em estimar a herdabilidade simulada (0.30). A redução na estimação 

da herdabilidade pelos modelos genomicos são menores do que os modelos 

baseados em informações de pedigree. Os modelos genômicos apresentaram 

em média maior correlação que os modelo BLUP. Os resultados desse estudo 

sugerem que não é necessário grande número de gerações para acurada 

estimação dos componentes de variância e dos valores genéticos. O algoritmo 

APY não afeta a estimação dos componentes de variância. Duas gerações 

extras de animais não genotipados são suficientes para acurado cálculo dos 

componentes de variância, valores genéticos e também acurácia de predição 

dos valores genéticos. 
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GENERAL INTRODUCTION 

 

 Brazil plays as one of the most important worldwide producers of animal 

protein for human consumption. The country already has the largest 

commercial cattle herd of the world. Several initiatives are in place to augment 

the income by increasing the volume of exported products (GOMES, 2017). 

Simultaneously, there is an effort to create an international safety standard and 

to continue the improvement of traits of economic importance. 

 The second effort is the kind of initiatives leaded by breeding which is 

focused to continuously improve traits of economic importance and to develop 

design breeding schemes with potential to increase productivity. Traditional 

breeding schemes have been used and was undoubtedly successful for many 

decades. Animal breeding has achieved genetic gains by estimating the 

genetic merit of selection candidates based on phenotype and pedigree 

information (HENDERSON, 1973; SCHAEFFER, 2006). However, there is a 

need to increase the rate of genetic gain. Traditional schemes may limit the 

annual genetic progress due to high cost and time taken to identify superior 

animals. 

More recently, developments in high-throughput genotyping platforms 

have allowed scientists and breeders to design strategies for long-term genetic 

gain at a reduced cost and time. The development of molecular markers 

opened up breeding to new opportunities. Initial insights with the use of 

genomic data have been focused only on computation of more reliable genetic 

merit information. This effort provided a tremendous gain when selecting the 
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parents of next generation. However, the complete potential for the use of 

molecular markers is yet to come. There is still a big challenge under broad 

genomic implementation. Genotyping cost still is one of the main limiting 

factors for broad implementation of genomic models in commercial herds. A 

big impact and cost-efficient alternative would be the adoption of customs 

marker panels (HUANG et al., 2012). The main idea for customization of SNP 

panels relies on decreasing of genotyping costs by selection of single 

nucleotide polymorphism (SNP) markers which includes only those informative 

markers for target objectives. Breeding programs would be able to re-design 

scheme strategies to include even more genotyped animals. Indeed, this may 

support the selection of animals upon young ages, consequently, it is expected 

to see an increase on annual genetic gain rates.  

Following the breeder’s interest in crossbreeding, BLUP models in 

multibreed and admixed evaluations were extended to account for both 

intrabreed and interbreed additive effects, and non-additive genetic effects 

such as dominance (LO et al., 1993; LO et al., 1995; LO et al., 1997). Genomic 

information opened up an unlimited number of possibilities for multibreed 

genetic evaluation. Now it is possible to evaluate the genetic merit of animals 

using a more reliable relationship information. Traditionally, such information 

was being calculated using expectations. Marker data permits the assessment 

of true alleles shared between animals and breeds. This is of major impact 

under genetic evaluation programs because mendelian sampling can be 

directly accessed. 

Recently, a new paradigm emerged around genomic evaluations. An 

increasing availability of marker data is challenging the current methods for 
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breeding values prediction. The main challenge is related with genomic matrix 

operations (e.g., factorization, inversion) needed for variance component and 

accuracy estimation. New algorithms and data manipulation still needs to be 

developed or improved. Some approaches are already being reported in 

literature (FERNANDO et al., 2014; MISZTAL et al., 2014; MASUDA et al., 

2016; MASUDA et al., 2017). These kinds of approaches are especially 

important under multi-trait and multibreed genetic evaluation; and they are 

usually implemented under mixed model equations. It would be straightforward 

only solve the equations without of genomic data. However, it can be 

challenging if a large number of genotyped animals are included in genetic 

evaluations. 

The objectives in this study were identify SNP markers applied on breed 

of origin and breed composition for a multibreed population composed of 

Hereford and Braford beef cattle, to evaluate the impact of genomic 

information on multibreed genetic evaluation and, finally, to evaluate variance 

component estimation under sparse inversion in large populations. 
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CHAPTER 1 

DEVELOPMENT OF A CUSTOM SNP PANEL TO ASSIGN BREED 
ORIGIN AND GENETIC COMPOSITION: THE CASE OF BRAFORD 

COMPOSITE BREED 

 

Abstract: Understating the population structure has an immediate importance 

amongst areas of genetic. After the development and establishment of single 

nucleotide polymorphism (SNP) genotyping platforms on the last decade, an 

interest in genetic diversity studies has arisen and especially the study of 

individuals’ origin. We used the high-density Illumina Bovine HD BeadChip 

with more than 777 K SNPs to elucidate the structure of Hereford, Nelore, 

Brahman and Braford populations. Three different ancestry informative 

markers (AIMs) methods were used to distinguish such populations. 

Additionally, random marker selection was considered. ADMIXTURE was 

used to infer breed composition using very low-density SNP panels assembled 

with AIMs. Our results suggest that is possible to assign individuals to 

subpopulations with high confidence using less than 8 SNP markers per breed. 

Under the adopted strategy to select AIMs, model-based ancestry estimation 

clearly separated the indicines from taurines. Although millions of SNP 

markers have been identified, only few of them are needed to accurately infer 

ancestry in a cost-effective manner. 

Keywords: admixture, cattle, chromosome, genetic diversity, genomic region 
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INTRODUCTION 
 

The use of molecular markers in breeding programs is already a reality 

for the majority of economically important species. Huge investments have 

been applied on development of more efficient high-throughput genotyping 

platforms aiming to decrease the genotyping costs. However, genotyping cost 

still is one of the main limiting factors for broad implementation of genomic 

models in commercial herds. HUANG et al. (2012) suggests that a cost-

efficient alternative would be the adoption of reduced customs marker panels. 

The idea relies on decreasing of genotyping costs by selecting of single 

nucleotide polymorphism (SNP) markers for target objectives.  

Under livestock conditions, the estimation of breed composition and 

breed assignment for young animals could be performed by the use of reduced 

low-cost SNP panel. The knowledge on breed composition is of major 

importance under design of breeding schemes. With this respect, the 

estimation of such parameters must be as accurately as possible. Currently, 

most of genetic evaluation programs has been predicting breed composition 

based on pedigree datasets; but, such estimations only accounts for the 

expected (allele frequency) contributions across ancestors (FRKONJA et al., 

2012). 

In literature is already reported some methods for selection of 

informative markers (DING et al., 2011; WILKINSON et al., 2011; FRKONJA 

et al., 2012; HULSEGGE et al., 2013; HWA et al., 2016). These methods are 

focused on the identification of markers that exhibit large allele frequency 

differences between populations under study (ROSENBERG et al., 2003). 

Over the last years some studies have demonstrated that thousands of 
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individual SNPs distributed throughout the genome may have very large 

differences in allele frequencies between populations depending on its origin 

(PRICE et al., 2007). These SNP markers are commonly referred as ancestry 

informative markers (AIMs). Independently of the chosen method, they intend 

to identify well distributed informative markers throughout genome are capable 

to distinguish individuals between subpopulations (MANTA et al., 2013). A 

variety of reported studies has been revealing that measures such as pairwise 

Wright’s FST (FST), Informativeness for Assignment (In) and Absolute allele 

frequency difference (Delta, d) are to be proven effective and useful to detect 

ancestry informative markers (CHIANG et al., 2010). 

The objective of the present study was to evaluate the minimum 

required number of AIMs necessary to differentiate Hereford, Nelore, Brahman 

and Braford breeds genotyped with 777 K Illumina Bovine HD Bead Chip. In 

addition, we also compared the effects of different panels size on breed 

composition inference under different AIMs methods. 

 

MATERIALS AND METHODS 
 

Animal Care and Use Committee approval was not obtained for this 

study because dataset was generated from multiple previous studies. 

 

Genotype data 

 

Brazilian and U.S. samples from Braford (n=124), Nelore (n=21), 

Brahman (n=30) and Hereford (n=116) were initially collected and genotyped 

using the 777K SNP Illumina Bovine HD Bead Chip. 
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Quality control 

 

 The quality control (QC) was performed within each progenitor breed 

(Hereford, Nellore and Brahman) using different criteria for SNPs and for 

samples. The criteria used to exclude SNPs were Hardy-Weinberg Equilibrium 

Chi-Square (HWE) (10-7), call rate (CR) (<98%) and SNPs in the same 

position. In addition, SNP markers that are located in sex chromosomes or 

with unknown position were also excluded. Minor allele frequency (MAF) was 

not used as SNP exclusion criteria because we intended to identify informative 

markers independently of their frequency. In fact, monomorphic markers play 

an important role due to the possibility to be used to distinguish populations, 

which is desired for studies that intend to infer breed composition (JUDGE et 

al., 2017). The QC applied for samples was identical samples (IS) (> 99.5% 

similarity), call rate (< 90%) and heterozygosity deviation above three standard 

deviation (HD). 

 After editing, a total of 598,558; 510,090 and 624,912 SNP markers and 

113; 21 and 29 samples remained for Hereford, Nelore and Brahman animals, 

respectively. Assuming that each breed selected a different amount and a 

different sort of markers, only SNPs shared between purebreds were kept for 

further analysis. Therefore, a total of 481,509 markers were selected to 

compose the full SNP panel used to apply the AIMs methods.  
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Marker imputation 

 

 To obtain a greater number of available genotypes, marker imputation 

was performed after the quality control check. This step was applied within 

each breed and the analysis were carried out using the FImpute software 

version 2.2 (SARGOLZAEI et al., 2011). FImpute uses an overlapping sliding 

window algorithm to efficiently exploit relationships similarities between target 

and reference individuals. Assuming the set of selected markers after QC, only 

Herefords and Braford had missing genotypes, 0.12% and 0.51%, 

respectively. 

 

Methods to detect informative markers 

 

In this study, we adopted the Absolute allele frequency difference 

(Delta, d), the Pairwise Wright’s FST (FST) and the Informativeness for 

Assignment (In) as AIMs measures. All analysis were performed using TRES 

software (KAVAKIOTIS et al., 2015). 

The cutoff values applied on these statistics have been subjective and 

vary among the methods and published studies (HALDER et al., 2008). 

Because of the subjective pattern on the marker selection, we decided to 

select the top-ranked SNPs instead of evaluating different cutoff thresholds. In 

addition, we evaluated how often the same set of SNPs was selected among 

methods and their ability to reproduce consistent results on breed inference. 

Moreover, the Spearman’s rank correlation of top-ranked SNPs between 

methods was also performed. 
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After the calculation of marker’s score for origin determination, a sort of 

fifty top-ranked markers were selected within purebred totaling a custom panel 

of 150 SNPs for each AIM methods. Further constraints were applied in these 

custom panel aiming to keep only those informative markers (see next sections 

for more details). 

 

Pairwise Wright’s FST 

 

 The FST measure is used as a parameter for describing the genetic 

diversity among populations (WEIR and HILL, 2002). The method describes 

the variance of allele frequency among populations. As consequence of 

genetic drift and artificial or natural selection, one specific allele could be 

favored over others. Thereby, such locus possibly might be important to be 

used to genetically differentiate subpopulations. 

 

"#$ =
&'() − '+),

+

&'() + '+),.2 − &'() + '+),0
 

 

here, '1) is the allele frequency of 234 population and 534 reference allele. The 

FST values range between 0 and 1, in which greater values denotes greater 

genetic differentiation in that chromosome region. 

 

Absolute allele frequency difference (Delta, d) 

 

 Delta (SHRIVER et al., 1997) is one of the most used AIMs measure 
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and is one of the easiest to be applied. The measure can be easily calculated 

as 6 = |'(( − '+(|. The method is defined as the absolute difference between 

allele frequencies of a genomic region. As well as FST measure, Delta values 

also ranges between 0 and 1. 

 

Informativeness for Assignment (In) 

 

 This measure was proposed by ROSENBERG et al. (2003) and has 

widely been used to detect highly informative ancestry markers across 

populations (OLIVEIRA et al., 2015).The measure can be defined as follows: 

 

89 =:;−') <=>+ ') +:
') <=>+ '1)

?

@

1A(

B

C

)A(

 

 

 This formula gives the expected logarithm of the likelihood ratio whose 

numerator is the likelihood that an allele is assigned to one of the populations 

and the denominator is the likelihood that an allele is assigned to the average 

population. Unlike FST and d, which varies between 0 and 1, In has a possible 

maximum value defined as <=>	?, where ? is the number of populations. 

 

Random marker selection 

 

 There are several published researches reporting random marker 

selection as a powerful strategy to detect genetic stratification (PRICE et al., 

2006). In this sense, random marker selection was also included as scenario 
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for SNP selection. 

 

Construction of a custom SNP panel 

 

Since one of our objectives is the identification of the minimum number 

of SNP markers usable to infer breed composition as accurate as possible, we 

present a simple strategy to compute the marker score. All three adopted 

methods in this study estimates the informativeness importance of each 

marker by pairwise comparisons between breeds. However, we are dealing 

with three purebred populations (Hereford, Nelore and Brahman) and one 

crossbred population (Braford). In such circumstances, it is possible that 

marker identification may be impaired if all purebreds are considered as 

different populations. Then, the loci (i.e., marker) score is assumed as an 

average of pairwise comparisons in order to produce only one value for each 

marker. As alternative, AIM identification was performed assuming a multi-step 

approach, in which those informative markers within each purebred population 

were scored at a time. For example, to obtain the ancestry informative markers 

for Hereford it was assumed that Nelore and Brahman are a unique population. 

A similar procedure was considered to select markers from Nelore and 

Brahman breeds. Since Braford breed results from crossbreeding between 

Hereford, Nelore and Brahman, the identification of markers that are capable 

to distinguish purebreds would provide a breed composition estimation. 
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Linkage disequilibrium constraint 

 

 The exclusion of redundant SNP markers based on linkage 

disequilibrium (LD) was performed after the calculation of the AIMs methods. 

LD analysis was done considering only a very low-density SNP panel of 150 

most informative markers for each AIMs method. For this purpose, we adopted 

the r2 statistical measure calculated using PLINK software version 1.07 

(PURCELL et al., 2007). The parameters used were --indep-pairwise 50 5 0.5, 

in which the first two are the window size in terms of number of SNPs and the 

number of SNPs to shift the window at each step; and the third parameter 

represents the r2 threshold. For those SNP pairs that exhibited strong 

association (> 0.5), only the marker with lowest MAF was kept for further 

analysis. As result, it remained 125, 121 and 120 highly informative markers 

to compose FST, d and In panels, respectively. 

 

Individual assignment analysis 

 

 There are several approaches that can be used to evaluate genetic 

assignment (PAETKAU et al., 1995; RANNALA and MOUNTAIN, 1997; 

CORNUET et al., 1999). In this study, an R code was developed to implement 

the method proposed by PAETKAU et al. (1995), which determines how likely 

an individual’s genotype may be originated from the population in which it was 

sampled. Let '1)E denote the frequency of the kth allele (F	 = 	1, 2) at the jth 

locus (5 = 1,… , J) in the ith population (2 = 1,… , 8). Let >)EEKdenote a diploid 

genotype and let the Mendelian transmission probability of >)EEK arising in the 
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ith population be 

 

L&>)EEKM2, = N
'1)E
+ 											2O	F = F′

2'1)E'1)EK	2O	F ≠ F′
 

 

where a genotype is homozygous if F	 = 	F’ or heterozygous otherwise, under 

the assumption of random union of gametes. Next, let g denote an multilocus 

genotype. The likelihood of a diploid genotype occurring in a particular 

population, L(>|2), was estimated as above. Under the assumption of 

independence between the J loci 

 

<=>(U(L(>|2)) 	= : <=>(U(L(>)EEK|2))
)

 

 

To assess the performance of the breed assignment procedure, log-

likelihood ratios (LLR) were calculated as the log-likelihood difference of the 

population of origin and the others population as 

 

VVW	 = <=>(U[L(>|2Y)] − <=>(U[L(>|2[)] 

 

 Different stringency thresholds were applied as confidence levels of 

assignment precision. The four stringency levels adopted were LLR > 0, LLR 

> 1, LLR > 2 and LLR > 3 (WILKINSON et al., 2011; HULSEGGE et al., 2013). 

The correct assignment of an individual genotype to its known origin occurred 

when the calculated LLR was greater than the selected stringency level for all 

populations. If the LLR was lower than the selected stringency level at least in 
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one comparison, the animal failed to be assigned to its breed of origin. 

 

Breed composition inference 

 

 After the identification of the most informative SNPs through the 

described AIMs methods, we evaluated the breed composition prediction 

ability using the custom panel. For this purpose, different quantities of top-

ranked SNP markers were used until reach the total number of markers 

included in the custom panel. In this step, we used the Admixture software 

(ALEXANDER and LANGE, 2011), which is an ancestry estimation 

computational tool. 

 

RESULTS 
 

Comparison of the AIMs methods 

 

 Histograms of the average estimates of genetic information contained 

in each marker are presented for each method in Figure 1. It was observed a 

different distribution amongst FST and In showing a large amount of SNP 

markers with zero values (i.e., non-informative markers). Despite d scores 

reflect a more symmetric shape than the other measures, all methods’ 

distribution demonstrates some degree of asymmetry (positive-skewness 

trend). We noted that, independently of the method, most of SNPs contained 

low to medium levels estimates of genetic information. This could be accessed 

by the observed mean (median) ancestry informative scores of 0.23 (0.21), 

0.34 (0.34) and 0.16 (0.14) from FST, d and In methods, respectively. 
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Figure 1. Histograms of the average estimates of genetic information 
contained in each SNP marker for the pairwise Wright’s FST, Delta (δ) and 
Informativeness for Assignment (In) methods. 

 

 Most of 125 top-ranked markers overlapped across methods (102) and 

the greatest level of Spearman’s rank correlation (1.00) were observed 

between d and In (Table 1). The number of shared markers between FST and 

d, and between FST and In were, respectively,79.20% and 80% of the total. 
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Table 1. Number of overlapping markers (upper-triangle) and the Spearman’s 

rank correlation (lower-triangle) between the SNP scores under different 

ancestry informative markers measures. 

 FST Delta In 

FST  99 100 

Delta 0.935  102 

In 0.933 1.000  

FST = Pairwise Wright’s FST; Delta = Absolute allele frequency difference (d); In 

= Informativeness for Assignment. 

 

Genotypic frequencies under different marker selection strategy 

 

It was decided to present only the results of the first top 38 markers, 

because the addition of more markers did not provide a significant 

improvement (not shown). These markers were displayed in a scatter-plot for 

each method (Figure 2). Results of random marker selection are also shown 

as negative control. This plot shows the most frequent homozygous genotype. 

For example, if in a specific locus from Hereford the allele A is the most 

frequent, we used the genotypic frequency of genotype AA to contrast the 

genotypic frequency of the same genotype from Nellore, Brahman and 

Braford. 

The Figure 2 shows how well AIMs methods were capable to identify 

the 38 highly informative SNP markers. Considering one purebred at a time, it 

is possible to note a well-defined behavior to differentiate its genotypic 

frequency from the others. As expected, Braford genotypic frequencies 
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behaved fluctuating between the purebreds. A quite different trend was 

showed for markers randomly selected. 

 

 

Figure 2. Genotypic frequency between 38 informative markers selected 

under different methods regarding the ability to distinguish a specific purebred 

to the other purebreds. HH = Hereford, NE = Nelore, BR = Brahman, Fst = 

Pairwise Wright’s FST, Delta = Absolute allele frequency difference (δ), In = 

Informativeness for Assignment, Random = random marker selection 

 

Overall assignment precision evaluation 

 

 To evaluate the average percentage of correct assignment to the known 

HH vs others NE vs others BR vs others
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breed of origin, we calculated the LLR by adding, progressively, one marker at 

a time until reach the number of markers in custom panels. The results of the 

average correct assignment of 287 individuals are presented in Figure 3. 

Assuming LLR > 0 as threshold we achieved more than 70% of correct 

assignment using 2 markers per breed independently of the method. It was 

possible to accomplish 100% of correct assignment using only 8 highly 

informative markers with high confidence (LLR > 3). The random marker 

selection showed the worse performance at the four confidence thresholds. 

This strategy was not able to deliver more than 95% of correct assignment 

using 87, 105 and 120 markers at LLR > 0, LLR > 1 and LLR > 2 confidence 

thresholds, respectively. The In measure was the best, it reached 100% of 

correct assignment using the lowest number of markers (5 markers per 

purebred) at LLR > 3 (Table 2). 

 

Table 2. Minimum number of SNP markers per purebred required for achieve 
100% of breed correct assignment at the four confidence thresholds by each 
SNP selection method. 

 Confidence thresholds 

Method LLR0 LLR1 LLR2 LLR3 

FST 2 3 6 8 

Delta 5 6 7 8 

In 2 3 4 5 

Random* - - - - 

FST = Pairwise Wright’s FST; Delta = Absolute allele frequency difference (d); In 

= Informativeness for Assignment. 
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* Random marker selection was not capable to achieve 100% of correct 

assignment to Hereford (96.46% was the greater observed value under LLR0 

confidence threshold). LLR0: LLR > 0; LLR1: LLR > 1; LLR2: LLR > 2; LLR3: 

LLR > 3. 

 

 

Figure 3. Average percentage of correct assignment considering the top-

ranked SNP markers at the four stringency threshold levels for each selection 

method. LLR0: LLR > 0; LLR1: LLR > 1; LLR2: LLR > 2; LLR3: LLR > 3. 
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Individual assignment evaluation 

 

 The assignment power of the animals to its known breed of origin 

differed depending on the SNP selection method and number of markers used 

(Table 3). We noted that it was possible to achieve 100% of correct assignment 

using less than 8 highly informative markers in a variety of breeds and AIMs 

methods. Considering the ability to allocate animals to its breed of origin, 

random marker selection produced the worse performance exhibiting low 

assignment percentage for both Braford and Hereford. A different trend is 

shown, and a well-defined pattern is achieved for zebu breeds. 

The success on Braford assignment required more markers than other 

breeds (18 markers per purebred). In general, the In measure demonstrated a 

very similar ability to allocate the animals to its breed compared to d. Indeed, 

this is expected because 19 from 24 markers (i.e., very low-density SNP panel) 

were shared between these methods. Additionally, we noted that 15 SNPs are 

shared among all methods (Table 4). 

 

Table 3. Assignment power on individual breed of origin at different 
confidence thresholds considering different methods to choose ancestry 
informative markers. 

Method 

Number of SNPs 

per breed into 

panel 

Confidence threshold 

LLR0 LLR1 LLR2 LLR3 

Hereford 

FST 

1 98.23 98.23 0.00 0.00 

3 100.00 100.00 98.23 0.00 

6 100.00 100.00 100.00 99.11 
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8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Delta 

1 97.34 0.00 0.00 0.00 

3 99.11 97.34 97.34 0.00 

6 100.00 100.00 99.11 99.11 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

In 

1 97.34 97.34 0.00 0.00 

3 100.00 100.00 97.34 97.34 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Random 

1 38.93 0.00 0.00 0.00 

3 85.84 5.30 0.00 0.00 

6 87.61 15.04 0.00 0.00 

8 92.03 74.33 27.43 0.88 

10 88.49 80.53 52.21 9.73 

18 88.49 85.84 82.30 68.14 

Nelore 

FST 

1 4.76 0.00 0.00 0.00 

3 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Delta 
1 100.00 100.00 100.00 0.00 

3 100.00 100.00 100.00 100.00 
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6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

In 

1 100.00 100.00 100.00 0.00 

3 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Random 

1 100.00 100.00 0.00 0.00 

3 100.00 100.00 100.00 90.47 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Brahman 

FST 

1 100.00 0.00 0.00 0.00 

3 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Delta 

1 100.00 100.00 96.55 0.00 

3 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

In 1 100.00 100.00 96.55 0.00 
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3 100.00 100.00 100.00 100.00 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Random 

1 100.00 82.75 65.51 0.00 

3 100.00 100.00 96.55 89.65 

6 100.00 100.00 100.00 100.00 

8 100.00 100.00 100.00 100.00 

10 100.00 100.00 100.00 100.00 

18 100.00 100.00 100.00 100.00 

Braford 

FST 

1 79.03 72.58 70.96 70.96 

3 95.96 95.96 95.96 92.74 

6 99.19 99.19 98.38 98.38 

8 98.38 98.38 98.38 98.38 

10 98.38 98.38 98.38 98.38 

18 100.00 100.00 100.00 100.00 

Delta 

1 67.74 54.83 45.16 33.06 

3 87.09 86.29 85.48 82.25 

6 96.77 95.96 95.16 95.16 

8 98.38 98.38 98.38 97.58 

10 98.38 98.38 98.38 98.38 

18 100.00 100.00 100.00 100.00 

In 

1 82.25 72.58 72.58 66.12 

3 94.35 94.35 94.35 89.51 

6 98.38 98.38 98.38 98.38 

8 99.19 99.19 98.38 98.38 

10 100.00 100.00 100.00 100.00 

18 99.19 99.19 99.19 99.19 
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Random 

1 61.29 0.00 0.00 0.00 

3 59.67 53.22 53.22 52.41 

6 66.93 55.64 55.64 54.83 

8 88.70 81.45 70.96 63.70 

10 92.74 85.48 79.03 73.38 

18 95.96 91.93 91.93 85.48 

FST = Pairwise Wright’s FST; Delta = Absolute allele frequency difference (d); In 

= Informativeness for Assignment. LLR0: LLR > 0; LLR1: LLR > 1; LLR2: LLR 

> 2; LLR3: LLR > 3. 

 

Table 4. Description of the highly informative SNP markers shared between 
ancestry informative markers (AIMs) measures. 

SNP_Name #RefSeq Chr Position 
Method 

FST δ In 

BovineHD0100005101 rs135136717 1 16899067 1.00 1.00 1.00 

BovineHD0300006220 rs133782326 3 19498973 1.00 1.00 1.00 

BovineHD0300016882 rs137036969 3 55957304 1.00 1.00 1.00 

BovineHD0300029358 rs137604291 3 102530413 1.00 1.00 1.00 

BovineHD0400003175 rs136308245 4 10484060 1.00 1.00 1.00 

BovineHD0600032730 rs134927227 6 115400094 1.00 1.00 1.00 

BovineHD0800024621 rs137239842 8 82702393 1.00 1.00 1.00 

BovineHD1000015876 rs134656281 10 53092803 1.00 1.00 1.00 

BovineHD1600014567 rs137052668 16 52600950 1.00 1.00 1.00 

BovineHD1800004598 rs136175363 18 14084653 1.00 1.00 1.00 

BovineHD1900018697 rs137297147 19 35328429 1.00 1.00 1.00 

BovineHD2300015477 rs136184268 23 4825558 1.00 1.00 1.00 
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BovineHD2400000053 rs135903052 24 357370 1.00 1.00 1.00 

BovineHD2400017966 rs136386152 24 61834611 1.00 1.00 1.00 

BovineHD2500012235 rs135204356 25 37936548 1.00 1.00 1.00 

#RefSeq: reference number; Chr: chromosome; FST: pairwise Wright’s FST;δ: 

absolute allele frequency (Delta);In: informativeness for assignment. 

 

Breed composition prediction 

 

 Until now, we have discussed the simplest situation when the objective 

is only the individual identification to its known breed origin. However, a 

complex scenario emerges in circumstances where markers will be applied for 

breed composition inference. Such complexity may arise when crossbreds 

under evaluation are resulting from a recent admixture, likely the case of 

Braford breed (BLACKBURN et al., 2017). The population structure inferred 

using a maximum likelihood approach considering 2 and 3 clusters is 

presented in Figure 4. It is straightforward to see that inferences on breed 

composition of full genotype panel are quite different from those when using a 

very low-density SNP panel. The results of full genotypic panel (481,509 

markers) suggest that some Hereford animals shares more than 20% of its 

genetic background with Zebu breeds (K=2). A similar trend is also viewed for 

all Nellore animals, in which shares genetic content with major part of Hereford 

animals (K=3). 

Independently of the number of populations (K) assumed a priori, we 

observed a similar pattern amongst AIMs methods. Despite the random 

marker selection was able to differentiate between Hereford and zebu breeds 



 28 

(data not shown), it was not sufficient to capture the Braford and Hereford 

composition. 

 

Figure 4. Population structure inferred using a maximum likelihood approach. 

Individual breed composition predicted using a complete SNP panel (first row) 

with 481,509 markers and a reduced marker panel with 8 markers per 

purebred proposed by Pairwise Wright’s FST, Delta, Informativeness for 

Assignment and random markers selection methods, respectively. The left 

column presents a scenario assuming K=2 and the right column show the 

results of K=3. HH = Hereford, NE = Nelore, BR = Brahman and BO = Braford. 
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DISCUSSION 
 

Our goal was to evaluate the minimum number of markers required to 

correctly assign Hereford, Nellore, Brahman and Braford animals to its known 

breed of origin and to evaluate breed inferences using the Ancestry Informative 

Markers methods. For this purpose, we adopted three widely used methods 

which aims to select markers that are capable to distinguish populations 

[Pairwise Wright’s FST (FST), Delta (d) and Informativeness for Assignment (In)]. 

 Several reported researches elucidated methods to identify breed of 

origin (ROSENBERG et al., 2003). However, neither of them discussed the 

effects on the breed inferences specially when dealing with recent composite 

(admixture populations) breeds. 

 

Comparisons of informative marker selection methods 

 

 The high score Spearman’s rank correlation between AIMs measures 

suggests a similar trend amongst methods (Table 1). Such outcome would 

indicate that adopted methods have selected informative markers. A similar 

trend was reported by WILKINSON et al. (2011), in which detected high 

correlation estimates and also a large degree of overlapped markers between 

FST and d. 

The majority of the markers are useful to distinguish or to allocate 

individuals to populations. Despite similar reported outcomes here, in general, 

it is not well established which method provides the best sort of AIM. However, 

it is already published that the number of populations under consideration, the 

respective level of genetic differentiation between populations and the desired 
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confidence affects the assignment process (BAYE et al., 2011). Indeed, many 

questions addressed to what method and type of markers should be used to 

allocate individuals into populations are still unanswered (DING et al., 2011). 

 

Overall assignment quality 

 

 The evaluation of the minimum number of markers to effectively assign 

animals to its known breed of origin was performed by calculating the average 

log-likelihood ratios (LLR) estimates among breeds within each AIMs measure. 

The LLR approach was used to evaluate the success on the assignment to 

breed of origin. As expected, the higher stringency threshold adopted, the 

higher the number of markers needed to assign individuals at high confidence 

levels (e.g. levels greater than 95% of assignment success). Thereby, the risk 

on the false positive decreases when greater confidence thresholds (LLR > 3) 

are assumed (HULSEGGE et al., 2013). The adoption of this approach as 

statistical measure of efficiency improves our certainty in situations where it is 

necessary assignment power evaluation. 

 The average values of LLR (Figure 3) suggests that the strategy used 

to identify AIMs demonstrated high ability to set individuals to its true 

population using only few markers. As expected, marker random selection 

shown limited and low efficiency to identify breed of origin because the method 

did not provide 100% of assignment in neither LLR level. One possible 

explanation is that there are relatively few genomic regions substantially 

differing among populations (HALDER et al., 2008). In that cases, it would be 

a difficult task to randomly find informative genomic regions. 
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Individual breed assignment 

 

 Our findings suggest that 8 markers per purebred were needed to reach 

100% of assignment power regardless of the method (Table 3). However, 

using only a panel with 24 markers it was not possible to assign Braford 

animals with high certainty. This suggests that heterozygosity may affected the 

assignment panel ability (Figure 2). Differently for purebreds that have most of 

the selected homozygous genotypes (BAYE et al., 2011). Many factors can 

affect the success on the assignment process. Most of the human and animal 

studies (ROSENBERG et al., 2003; WILKINSON et al., 2011; FRKONJA et al., 

2012) have been focusing on the identification of individuals’ subpopulation of 

origin for group of individuals who has been an ancient segregation. In such 

scenarios, it is expected that have had occurred many recombination and 

mutative events among such individuals. All these biological processes are 

important on the development of phenotypic patterns particular to breeds or 

populations. Thereby, it is expected that most reported methods used to 

estimate global ancestry shows a good ability to identify the most informative 

markers. However, our study deals with a recent breed, resulted from 

crossings between Hereford and zebu cattle (e.g. Nellore and/or Brahman). A 

complex scenario arises for Braford breed because the breed association 

allows the registration of different breed composition, such as Braford (1/2, 3/4, 

5/8, 7/8 and others). Such flexibility on crossing schemes inputs a high level 

of bias to correctly assign animals to that breed and to infer composition using 

molecular data. Perhaps, the close genetic relationship between Braford and 

purebreds is what determined that not all Braford animals had been correctly 
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set. This was also argued by Ding et al. (2011) when working with a simulated 

phased HapMap dataset. 

 It has been reported (Zeng et al., 2015) that most of the assignment 

issues has been occurring due to the lower level of pairwise genetic 

differentiation amongst breeds. Thus, breed genetic differentiation levels 

would act like a success determinant factor when a very low-density SNP 

panel is designed to set individuals to its true breed. This argument agrees 

with the lower assignment power to Braford individuals viewed in our results. 

The close genetic similarity of Braford to the other breeds justifies the lower 

assignment percentage found. Some authors argue that is possible that some 

animals will never be correctly assign; even when using a high number of 

markers, due to the lower genetic differentiation amongst the breeds. This is 

especially true when such populations results from recent admixture (Qin et 

al., 2010; Baye, 2011). 

 

Breed composition prediction 

 

 Analysis of breed composition were performed using a maximum 

likelihood approach assuming 2 and 3 cluster as a priori knowledge. Breed 

composition inferred using ADMIXTURE software is shown in Figure 4. It is 

known that different artificial selection pressure was applied to Hereford and it 

was differently influenced by natural selection and random drift compared to 

Nellore or Brahman (O’Brien et al., 2015). This is true because Hereford breed 

is originated from United Kingdom; and Nellore breed, was originated from 

India (tropical continent) and for a long time has been genetically improved 
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under climate Brazilian conditions. Brahman is a breed resulted from crossings 

of different zebu cattle, in which Nellore was one of the foundation breeds. As 

a result of population structure inference, it is expected that Hereford animals 

have much more similarities among themselves than with Nellore or Brahman 

(O’Brien et al., 2015). Also, it is expected that Brahman may share some 

alleles with Nellore cattle. Thereby, independently of K assumed, AIMs 

methods (FST, dandIn) shows the expected partition between Hereford and 

zebu breeds. This can be seen when using K=2 in which Nellore and Brahman 

are clustered together, and Hereford in the second one. Despite random 

method have had the ability to suggest that Nellore and Brahman as a unique 

genetic group, it was not capable to select markers to distinguish Hereford 

from Braford. This can be seen when evaluating the genetic content inferred 

of Hereford which shows some degree of genetic sharing with zebu breeds 

(Figure 4). 

 One of the most important step to define the panel size is the decision 

of how many markers should be included to provide reliable estimations about 

breed composition. Because little difference on Hereford proportion was 

observed when using panels with from 1 to 37 high informative markers per 

purebred, we suggest the optimum panel size as 24 markers (8 SNP markers 

per purebred). This was endorsed following the results of LLR approach in 

Table 2. Our panel size is similar to those obtained by Hulsegge et al. (2013) 

while selecting AIMs for different breeds. 

There are two different paradigms on the ancestry estimation issues: 

global ancestry and local ancestry. While local ancestry is related to the 

identification of chromosome segments belonging different subpopulation, 
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global ancestry aims to calculate the proportion of ancestry from each 

contribution population (ALEXANDER and LANGE, 2011). DING et al. (2011) 

argue that the presence of chromosome (local) population ancestry can be a 

confounding factor and indeed can lead to global ancestry false positive finds. 

Future studies should focus on the evaluation of the local ancestry effects 

when estimating global ancestry aiming to understand the relationship 

between AIMs methods and chromosome important regions. 

 

CONCLUSION 
 

Except for Braford animals, it was possible to assign individuals to 

subpopulations with 100% of confidence using less than 8 SNP markers per 

breed. All AIMs methods shown a very similar performance to assign 

individuals to subpopulations and predicting breed composition. Our results 

suggest that random marker selection does not perform well to identify 

ancestry informative markers and to infer breed composition. 
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CHAPTER 2 

A METAFOUNDER THEORY IN GENOMIC PREDICTION APPLIED TO 
BEEF CATTLE MULTIBREED POPULATION 

 

Abstract: Pedigree information is by nature incomplete and commonly not well 

established simply because many of the true genetic ties existent between 

individuals are not a priori known or they can be even wrong. Genomic era 

brought new opportunities when calculating relationships between individuals. 

The challenge under genomic approaches is the correct definition of genetic 

base by the use of pedigree and genomic data. Genetic base may change as 

more individuals are included and are inadequately defined if populations are 

genetically structured. Metafounder concept relies on the definition of pseudo-

individuals that describes some level of within and/or across genetic 

relationship between base population. The purpose of this study was to 

evaluate metafounder theory to estimate breeding values and the predictive 

ability under a single-step approach for a multibreed population. Three 

different scenarios were adopted to estimate variance components and to 

compute breeding values: pedigree-based model, single-step GBLUP and 

single-step GBLUP with addition of metafounders. A total of 28 different 

metafounders were included in the ssGBLUP+metafounder model. In general, 

it was possible to note that genomic models were able to greater ability to 

predict the future performance. Among genomic models, the inclusion of 

metafounder information could increment even more the predictive ability 

under cross-validation approach. 

Keywords: breeding, founder, variance components, YAMS  
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INTRODUCTION 
 

Pedigree information is by nature incomplete (and commonly not well 

established) simply because many of the true genetic ties existent between 

individuals are not a priori known or they can be even wrong (JUNQUEIRA et 

al., 2017). Besides that, pedigree is usually available for several livestock 

species and has been widely used to improve the reliability of breeding value 

estimation. 

Genomic era brought new opportunities when calculating relationships 

between individuals, because genomic relationships are independent of 

pedigree knowledge. Thus, they are not affected by incorrect or incomplete 

pedigree records over generations. Several genomic methods are published 

in literature (MEUWISSEN et al., 2001; VANRADEN, 2008; AGUILAR et al., 

2010; FERNANDO et al., 2014), but all of them implicit assumes that pedigree 

structure is absent (CHRISTENSEN, 2012) and the proposals are difficult to 

extend to several populations (HARRIS and JOHNSON, 2010; MISZTAL et al., 

2013). The challenge under genomic approaches is the correct definition of 

genetic base. Usually the base population is assumed as the current/available 

sort of individuals. Consequently, the genetic base may change when 

individuals are included in the database or if populations are genetically 

structured (HARRIS and JOHNSON, 2010). 

CHRISTENSEN (2012) provided some insights on how to create 

estimations of founder relationship. His suggestions works well when a single 

population is a priori assumed; however, extend to several founder populations 

is not straightforward. LEGARRA et al. (2015) reported a metafounder theory 

to consider relationships within and across founder populations. The paper 
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provides a generalization of unknown parent groups and Christensen’s results. 

Metafounder concept relies on the definition of pseudo-individuals that add 

some level of within and/or across genetic relationship between base (i.e., 

founder) individuals in the population. 

The purpose of this study was to test metafounder theory to estimate 

breeding values and to evaluate its predictive ability under a single-step 

approach for a multibreed population. 

 

MATERIAL AND METHODS 
 

Phenotype, Genotype and Pedigree information 

 

The data used for investigating the use of metafounders in genomic 

evaluations was provided by Conexão Delta G Breeding Program (Rio Grande 

do Sul, Brazil). All Hereford and Braford tick count records were derived from 

eight herds. Individuals kept in the data file were between 326 and 729 days 

old at the time of the count. The contemporary groups (CG) were formed by 

the combination of the effects of farm, sex, year of birth, management group 

and count date. Records of CG with less than five animals and counts above 

or below 3.5 standard deviations in comparison with the CG mean were 

discarded from the data file. After restrictions, 146 contemporary groups 

remained. The phenotypic file included records of 4,363 animals raised under 

extensive conditions and pedigree file included 12,755 animals. Of these 

phenotyped individuals, 2,188 animals had three subsequent tick counts, 

1,934 had two counts and 241 had only one count. Therefore, the total number 

of records was 10,673 related to 2,369 Hereford animals, and 8,304 from 
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Braford with a maximum of ¾ of Zebu proportion. The heterozygosity effects 

and recombination loss were calculated as proposed by CARDOSO and 

TEMPELMAN (2004) and included as linear covariate.  

Genotyping of 130 sires was performed using the high-density panel 

(BovineHD - Illumina bead chip with 777,962 SNPs), while the BovineSNP50 

Illumina panel (54,609 SNPs) was used for 3,461 animals. The quality control 

criteria adopted for SNPs exclusion were the Hardy–Weinberg equilibrium chi-

square test (p = 10-7), genotype call rate (CR) (<98%), minor allele frequency 

(MAF) (<3%), near-perfect collinearity with another SNPs (r > 0.98) and SNPs 

in the same position. The criteria adopted to reject samples were CR <90%, 

heterozygosity deviation above three standard deviations, sex identification 

errors and identical genotypes between different individuals (more than 99.5% 

of similarity for all markers). After quality control, a total of 3,528 samples and 

39,554 markers were retained for further analysis. 

 

Metafounders relationship 

 

 Metafounder information was included in this study based on the 

methodology proposed by LEGARRA et al. (2015). In the paper, authors 

defined the pedigree-based matrix modified for populations under different 

structures (e.g., single and multiple base populations). The concept of 

metafounder relies on the definition of pseudo-individuals that add some level 

of within and/or across genetic relationship between base (i.e., founder) 

individuals in population. The main idea is the assumption that metafounder 

population have a common ancestral population. To that, authors suggested a 
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modified relationship matrix (A(G)) which includes metafounders as 

individuals. The G matrix is composed by the relationship between 

metafounders. In this study, a total of 28 metafounders were defined both 

based on breed of origin (i.e., Hereford, Braford and Zebu) or based on year 

of birth and gender combination. The latter definition was only adopted when 

breed of origin of base individuals were unknown. Recursive computations of 

A(G) follows usual rules (EMIK and TERRILL, 1949; KARIGL, 1981; AGUILAR 

and MISZTAL, 2008). The only required modification to include metafounders 

is the assumption of \ as the self-relationship for founders. Note that self-

relationship for base animals are usually assumed as zero due to lack of 

historical information. The G matrix needs within- and across-founder 

relationship was estimated using molecular markers. In this study, generalized 

least square (GLS) was the method adopted to estimate G (GARCIA-

BACCINO et al., 2017). 

 

Scenarios 

 

 Three different scenarios were tested in this study: pedigree-based 

model (traditional BLUP), single-step GBLUP (ssGBLUP) and single-step 

GBLUP with addition of metafounders (ssGBLUP+metafounder). No 

restrictions were imposed to avoid or minimize inbreeding, as result a total of 

130 inbred individuals were found. The maximum inbreeding coefficient found 

was 25% and an average value across inbred animals of 5.73%. 

Aiming to reduce the computational time for variance components 

estimation in AI-REML, initial guesses of variance components were estimated 
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by Gibbs sampling using GIBBS2F90 (MISZTAL et al., 2002). A total of 

100,000 iterations were generated, with the first 30,000 discarded as burn-in 

and every 10th sample included in the posterior analysis. Posterior means were 

used as starting values for AIREMLF90 software (MISZTAL et al., 2002) 

implemented on YAMS package. Average information REML algorithm 

achieved convergence after only a few (£ 7) iterations. 

 The BLUP model was fitted using the regular relationship matrix 

constructed based on HENDERSON (1976) rules. Covariance genetic 

relationship matrix for both ssGBLUP and ssGBLUP+Metafounder were fitted 

using the approach presented by AGUILAR et al. (2011). The difference 

between these two last scenarios are restricted to the kind of information used 

as relationship matrix required to construct H matrix. While ssGBLUP adopted 

the same A matrix as BLUP, ssGBLUP+Metafounder fitted A(G) as described 

in the previous topic. 

 To compare the estimated variance components and genetic 

parameters between models, ssGBLUP+metafounder parameters needed to 

be multiplied by (1 − \1), corresponding to (co)variances among the unrelated 

breed animals (scaled) (LEGARRA et al., 2015). More specifically, the scaled 

genetic variances of Hereford (Braford) performance were ]^(_)+ `1 −
\^(_)

2
a b; 

the scaled genetic covariance for crossbred performance were ]^_+ &1 −
\̂
2
a ,. 

Heritabilities were calculated as usual using these scaled (co)variance genetic 

components. The additive correlations between Hereford and Braford were 

calculated as cd =
e^_
f `(g
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ie^
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. Finally, repeatability for Hereford and 
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Braford was calculated as cj =
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. For 

BLUP and ssGBLUP models the same described formulas were used to 

compute heritabilities, additive correlation and repeatability, but using directly 

the (co)variances estimated by REML algorithm. 

 

Statistical models 

 

 A repeatability bi-trait Mixed Model was used to estimate breeding 

values. The model can be seen as an incomplete model of WEI and VAN DER 

WERF (1994). The term incomplete is associated to the fact that phenotypes 

of Zebu are unknown. The model may be defined as follows 
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here q1 is the vector of tick counts phenotypes from Hereford (H) and Braford 

(B) animals; t1, x1	 and y1 are known matrices that relates phenotypes to its 

respective fixed, additive and permanent environment effect levels. The vector 

of fixed effect (w1) is composed by an overall mean, contemporary groups; 

heterozygosity, recombination loss, age at tick counting, quadratic age at tick 

counting effects were fitted as covariables. Vector of permanent environment 

effect can be defined as z{1~} ~�, Ä⨂ Ç
]ÉÑn
+ ]ÉÑno

]ÉÑno ]ÉÑo
+

ÖÜ; and the residual vector 

as {1~} ~�, Ä⨂ Ç
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]Ñno ]Ño
+
ÖÜ. Moreover, the vector of additive effects of BLUP 
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model was defined as p^
_
r ~} ~�, àg(⨂ Ç

]^
+ ]^_

]^_ ]_
+
ÖÜ; where ]^+ and ]_+ is the 

additive variance for Hereford and Braford traits, respectively; and ]^_  is the 

additive covariance between breeds.  

For genomic models, the àg( matrix is replaced by âg( and â(G)g(. Its 

additive (co)variance structure can be defined as follows 

 

var ç
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]^
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where ^ and _ stands for breeding values from Hereford and Braford animals, 

respectively. Thus, ^j is the breeding value of Hereford animals for purebred 

performance; whether ^[ stands for Hereford breeding values for crossbred 

performance. The vector _[ represents the Braford breeding values for 

crossbred performance; and * denotes artificial random values. 

The general âg( matrix can be defined as following 

 

âg( = àg( + s
� �

� (0.95ì + 0.05à++)
g( − à++

g(v 

 

 The relationship coefficient of à++g( was built based only on genotyped 

animals and their ancestors applying COLLEAU (2002) rules. The 

metafounder additive relationship, â(î)g(, was also constructed using the 

same approach, but differing on construction of pedigree-based relationship 

matrix. A unique genomic (G) matrix was used for both ssGBLUP and 
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ssGBLUP+Metafounder models. Consequently, it was implicit assumed that 

both breeds may have the same base allele frequencies. 

 

Within breed predictive ability 

 

 In this study the predictive ability was used as measure of model ability 

to predict the future (unknown) performance. Here we intended to compare 

predictive ability of each breed when predicting its own performance. To that, 

phenotypic data was divided into five (5-fold) random different training and 

validation sets.  

The predictive ability was represented as the average over the 5-fold 

random groups. Aiming to perform a fair comparison for each breed, twenty 

percent (20%) of phenotypes were removed for both breeds. Thus, a total of 

172 and 700 animals were used as validation set for Hereford and Braford, 

respectively. The predictive ability was measured by cross-validation trial as 

the correlation between corrected phenotypes (qï∗ = q − tw) and estimated 

breeding values within breeds. For example, Hereford predictive ability for its 

own performance was calculated as cor(qïj∗, ï̂j). Similarly, for Braford the 

predictive ability was computed as	cor(qï[∗, _̂[). 

 

RESULTS AND DISCUSSION 
 

Metafounder relationship and inbreeding 

 

 A total of 28 different metafounders were included in the 

ssGBLUP+metafounder model. Three metafounder groups were defined 
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based on breed of origin knowledge (Hereford, Braford and Zebu). Table 1 

shows the number of male and female individuals included in each Hereford, 

Braford and Zebu metafounder group. For the remaining animals with 

unknown parent information, a total 25 metafounders were determined based 

on gender and year of birth. Twenty-three of them had less than 20 male and 

female animals. The remaining two metafounder groups were composed by 

114 and 238 female animals. 

 

Table 1. Number of male and female individuals included in each 
metafounder constructed based on breed of origin. 

Metafounder Males Females 

Hereford 2,224 1,019 

Braford 5,891 2,421 

Zebu 34 34 

 

Self- and across- relationship (G) between Hereford, Braford and Zebu 

breeds estimated by GLS are ;
0.58 0.49 0.31

0.49 0.54 0.43

0.31 0.43 0.68

B, respectively in column-

wise order. As previously defined by LEGARRA et al. (2015), \ï can be seen 

as self-relationships. The relationship coefficient between metafounders was 

larger than zero, suggesting some overlapping degree between ancestor 

populations. The estimation of metafounder relationship indicates that 

Hereford and Zebu breeds has some degree of overlapping generations. 

However, as previously stated, there is no genotypic information from zebu 

breed in this study; in fact, only a fraction of all zebu descendants from the 

population were used for further computations. Thus, the population under 
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study is a special case (HARRIS and JOHNSON, 2010) of metafounder theory 

(LEGARRA et al., 2015) where at least one of pure breeds is unknown, but 

genotypic information from crossings are available. Moreover, the SNP panel 

used in this analysis is a blend of different SNP-chips where the missing 

genotypes were imputed. Because of that, our intention is not drawn any 

assumption on how these Hereford and Zebu may have shared some amount 

of allelic content across generations. To that end, there are other approaches 

already published in literature (ALEXANDER and LANGE, 2011; DECKER et 

al., 2014). 

Inbreeding coefficient (âùùî − 1) distribution calculated in 

ssGBLUP+Metafounder scenario is shown in Figure 1. Based on estimated \ï, 

negative values were seen after \ï − 1 computations. By that, it is suggested 

that ancestor populations are large enough (i.e., large effective population 

size); indicating that gametes from historical (i.e., base) population were not 

identical. Still in metafounder model, it can be seen that average inbreeding 

departure from the traditional framework, i.e. centered in zero. Classical 

quantitative genetic theory postulates that inbreeding for individuals with 

known parents are function of parent’s relationship. Founder individuals are 

typically assumed to be drawn from a large, unrelated, ancestral population 

mated at random. Consequently, inbreeding for founder animals are usually 

defined as zero due to lack of information. A different condition arises under 

metafounder theory where some degree of known relationship is initially 

assumed between ancestral populations. In this case, the probability that 

identical gametes are shared between individuals may increase; thus, 

inbreeding coefficients are upward shifted. 
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Figure 1. Inbreeding (û11
ü − 1) estimates from H matrix constructed based on 

metafounders. 

 

Variance components, heritability and additive correlation 

 

 All variance components, heritability and additive correlation estimates 

are available in Table 2. As previous described, variance components of 

metafounder model were scaled to provide a fair comparison with BLUP and 

ssGBLUP models (i.e., where founders are assumed as unrelated). In general, 

it can be seen that additive, residual and phenotypic variance components 

estimated based on Hereford performance are smaller than Braford across 

different models. For permanent environment variance, genomic models 

estimated nearly the same magnitude across scenarios. A different behavior 

was shown on BLUP estimation where ]ÉÑ+  for Hereford is greater than for 

Braford breed. 

When using genomic information, heritability estimates for Hereford are 

greater than traditional pedigree-based model. This suggests that it is possible 
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to achieve higher genetic gain rate over generations. Indeed, it is not expected 

to increase heritability estimates only due to inclusion of genomic information. 

However, the current pedigree is composed by many individuals with unknown 

parents. Consequently, there would be some level of additive variation which 

was not explained on BLUP model due to lack of relationship knowledge. 

Some degree of change on variance components was expected as a 

consequence of relationship improvement in an animal model with repeated 

measures. Improvements in the additive relationships due to inclusion of 

genomic information (i.e., ssGBLUP) and metafounders (i.e., 

ssGBLUP+metafounder) will affect as such components are jointly estimated 

under frequentist theory. As observed by JUNQUEIRA et al. (2017), any 

improvement on additive relationships may cause a changes of additive and 

permanent environmental effects. Consequently, there is an increase in 

heritability estimates indicating the increment on success of applying direct 

selection. The main outcome would be the increase in the annual rate of 

genetic gain, mainly due to more reliable heritability estimates and better 

prediction of breeding value. 

Additive correlation (cd) between Hereford and Braford were 0.67, 0.45 

and 0.62 for BLUP, ssGBLUP and ssGBLUP+Metafounder scenarios, 

respectively. The identification of existence of additive correlation is useful 

when designing breeding schemes and defining breeding objectives. Additive 

correlations are usually important to understand the magnitude of change on 

a first factor when applying some degree of constraint in the second factor. In 

the case of additive correlation between different breeds, our results that some 

genes responsible for the control of tick resistance are being expressed in both 
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purebreds and crossbreds. This result suggests that select Hereford for tick 

count resistance may also have a positive impact on Braford resistance. 

At the end, the definition of a breeding scheme will depend on the 

business objective. In the case of beef cattle, there are farmers that produce 

sires (purebreds or crosbreds) and those farmers that purchase genetically 

superior sires to produce calves. Rare are cases where all the production 

system is performed within a farm due to structure limitations and farmers 

profile/business interest. However, independently of the business objective, 

the breeding schemes need to consider the desired outcome when deciding if 

additional effects (e.g., dominance) are required to achieve the goal. The 

design of breeding schemes for mixture populations has been a challenge for 

years and will continue to be if a business collaboration between farmers and 

associations is not efficiently implemented. 
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Table 2. Description of variance components, heritability and additive 

correlation of Hereford and Braford using multibreed pedigree and genomic 

information. Standard error is presented within parenthesis. 

Parameters1 

Model2 

BLUP ssGBLUP ssGBLUP+Metafounder 

Hereford Braford Hereford Braford Hereford Braford 

]d
+ 

0.003 

(0.000) 

0.027 

(0.002) 

0.009 

(0.004) 

0.018 

(0.003) 

0.012 

(0.001) 

0.020 

(0.002) 

]ÉÑ
+  

0.018 

(0.002) 

0.006 

(0.001) 

0.013 

(0.004) 

0.013 

(0.002) 

0.012 

(0.001) 

0.013 

(0.001) 

]Ñ
+ 

0.060 

(0.000) 

0.074 

(0.001) 

0.060 

(0.002) 

0.074 

(0.002) 

0.06 

(0.002) 

0.073 

(0.001) 

]É
+ 

0.081 

(0.004) 

0.106 

(0.004) 

0.082 

(0.011) 

0.105 

(0.006) 

0.084 

(0.004) 

0.106 

(0.004) 

ℎ+ 
0.04 

(0.003) 

0.25 

(0.003) 

0.11 

(0.044) 

0.17 

(0.015) 

0.14 

(0.005) 

0.19 

(0.007) 

c 
0.26 

(0.013) 

0.31 

(0.012) 

0.26 

(0.080) 

0.30 

(0.030) 

0.29 

(0.008) 

0.31 

(0.010) 

cd 
0.67 

(0.022) 
 

0.45 

(0.149) 
 

0.62 

(0.017) 
 

1 ]d+: additive variance; ]ÉÑ+ : permanent environment variance; ]Ñ+: residual 

variance; ]É+: phenotypic variance; ℎ+: additive heritability; c: repeatability; cd: 

additive correlation. 2BLUP: pedigree-based model; ssGBLUP: single step 

genomic model; ssGBLUP+Metafounder: single step model with metafounder 

adjustment. 
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Predictive Ability 

 

 Mean predictive ability of 5-fold cross-validation approach is shown in 

Figure 2. This figure presents the predictive ability of each breed to predict its 

own performance. As expected, pedigree-based models shown the worse 

predictive ability when compared with both genomic models. When comparing 

the performance of genomic models, it is possible to see a positive increment 

on predictive ability due to inclusion of metafounders. The improvement on 

breeding values prediction is especially important for Hereford animals. Note 

there are less Hereford phenotypes and genotypes data than Braford data and 

any increase on accuracy estimation may have a direct impact under practical 

conditions when selecting breeding candidates. However, is important to keep 

in mind that these results might be influenced by the fact that only few Hereford 

samples were available. Perhaps, all allelic diversity present in Hereford 

population could not be captured; thus, further analysis is required to get a 

better understanding on the impacts of breeding values prediction using larger 

population. 

 



 54 

 

Figure 2. Mean predictive ability across of 5-fold clusters of Hereford and 

Braford own performance using pedigree (BLUP), single step (ssGBLUP) and 

single step with metafounders (ssGBLUP+Metafounder) models. 

 

In accordance with XIANG et al. (2017), this study shows the potential 

of metafounders to positively increment the rate of genetic gain across 

generations due to an accuracy increase on breeding values prediction. 

Perhaps, the challenge for Brazilian breeding programs would be the 

availability of a large amount information to calculate î. This study focused on 

the evaluation of the impact on breeding values due to inclusion of 

metafounder information. To that, all available genotypes were used to 

estimate î. However, only a small fraction of the population is genotyped; 

which is also the reality of the most worldwide breeding programs. Thus, there 

is still a lack of knowledge on how impactful would be the number and 

relatedness of genotyped samples when estimating î. Next studies should 

focus to have a better understanding on the number of genotyped samples 
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from different breeds may impact the prediction. Another subject would be the 

evaluation predictive ability when constructing âî  by using breed specific 

allele frequency. 

 

CONCLUSION 
 

The inclusion of genomic information provided greater predictive ability 

than pedigree-based models for both Hereford and Braford breeds. In addition, 

it can be seen inclusion of metafounders for genetic evaluation of beef cattle 

can positively impact the rate of genetic gain due to the increase of predictive 

ability. 
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CHAPTER 3 

IS SINGLE-STEP GENOMIC REML WITH ALGORITHM FOR PROVEN 
AND YOUNG MORE EFFICIENT WHEN LESS GENERATIONS OF DATA 

ARE PRESENT? 

 

Abstract: Restricted maximum likelihood (REML) is a popular method for 

parameter estimation. Because it uses the mixed model equations, it is 

resistant to selection bias and efficient implementations are currently available. 

When genomic information is available, two versions of REML may be 

applicable. When only genotyped animals have phenotypes, genomic REML 

can be applied with a genomic relationship matrix. When only a fraction of 

animals is genotyped, a single-step REML is applicable. In general, it is of 

interest to include many genotyped animals in parameter estimation and into 

evaluations, to account for genomic selection or pre-selection. The aim of this 

study was to investigate to what extent generations truncation affects 

estimates for a simulated population under selection. The use of less 

generations reduced the ability of pedigree-based model in estimating the 

benchmark heritability (0.30). The decrease in heritabilities based on genomic 

information was less than using only pedigree relationships. Genomic models 

provided greater correlations than pedigree-based model; on average 25 

points. Single-step genomic models do not require a deeper pedigree 

relationship to estimate reliable variance components and breeding values. 

The use of APY algorithm does not affect the estimation of variance 

components. An extra of 2 ungenotyped generations are sufficient to compute 

reliable variance components; as well as breeding values and accuracies. 

Keywords: accuracy, APY, ssGBLUP, YAMS  
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INTRODUCTION 
 

Restricted maximum likelihood (REML) described by PATTERSON and 

THOMPSON (1971) is a popular method for parameter estimation. Because it 

uses the mixed model equations (HENDERSON, 1975), it is resistant to 

selection bias and efficient implementations are currently available.  With the 

Average Information (AI) algorithm, often convergence is achieved in a few 

rounds. With traces obtained by sparse matrix factorization and inversion 

(MEYER, 1997), computing variance components is feasible even with large 

models. Specialized variations exist for parameters with singular co-variance 

matrices (MEYER and KIRKPATRICK, 2010). 

 When genomic information is available, two versions of REML may be 

applicable. When only genotyped animals have phenotypes, genomic REML 

(GREML) can be applied with a genomic relationship matrix (G). In general, 

such a matrix is dense and the cost of dense matrix operations would limit 

computations depending on the models. When only a fraction of animals is 

genotyped, a single-step REML is applicable (ssGREML). In the latter, the 

combined relationship matrix (H) has dense blocks due to the genomic 

information, limiting efficiency of sparse matrix operations. Lately, MASUDA et 

al. (2015) developed a sparse matrix package YAMS that identifies dense 

blocks and computes them efficiently. For ssGREML, with genomic 

computation, such a package resulted in up to 100 times speedup, allowing 4 

trait models with 20,000 genotyped animals (MASUDA et al., 2016). 

 In general, it is of interest to include many genotyped animals in 

parameter estimation and into evaluations, to account for genomic selection or 

pre-selection (PATRY and DUCROCQ, 2011). For instance, best reliability in 
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dairy was obtained using 50% of the heritability computed with a non-genomic 

REML (Shogo Tsuruta, personal communication). Over 1 million Holsteins 

have been genotyped. However, the cost of dense matrix operations with G in 

REML using YAMS is quadratic for memory and cubic for operations, and limits 

computations to around 50,000 animals. 

 The genomic information has a limited dimensionality due to the limited 

effective population size (STAM, 1980; VANRADEN, 2008). Such 

dimensionality varied from about 4,000 for pigs and chickens to 15,000 for 

Holsteins (POCRNIC et al., 2016b). Assuming limited dimensionality, the 

inverse of G – as needed by REML – can be sparsely constructed using the 

APY algorithm (MISZTAL, 2016), with close to linear memory and computing 

requirements. Subsequently, the inverses for over 500,000 animals can be 

computed and stored. However, the inverse of the H matrix also includes the 

inverse of a pedigree-based relationship matrix for genotyped animals (Aguilar 

et al., 2010). Such a matrix can be dense with long pedigree but is sparser 

with shorter pedigree. In large populations, such a matrix could not be 

efficiently stored but had to be accommodated indirectly (STRANDÉN and 

MÄNTYSAARI, 2014; MASUDA et al., 2017). 

The first purpose of this study was to find whether costs of ssGREML 

can be reduced using the APY algorithm with truncated pedigree. The second 

purpose was to investigate to what extent such truncation affects estimates for 

a population under selection.  
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MATERIAL AND METHODS 
 

 Animal care and use committee approval was not needed because data 

used in this study were simulated. 

 

Data simulation 
 

 To evaluate the effectiveness of the proposed approach for estimating 

variance components using genomic information, data were simulated using 

the QMSim software (SARGOLZAEI and SCHENKEL, 2009). The simulator 

was used to generate historical (undergoing drift and mutation) and recent 

(undergoing selection) populations. In total, 30 chromosomes of equal length 

(100 cM) were simulated. Biallelic markers (49,980) were equally distributed 

at random along the chromosomes with equal frequency in the first generation 

of the historical population. Potentially, 5,000 quantitative trait loci (QTL) 

affected the phenotype; QTL allele effects were sampled from a Gamma 

distribution with a shape parameter of 0.4. The mutation rate of the markers 

(recurrent mutation) and QTL was assumed to be equal to 2.5 ´ 10-5 per locus 

per generation (SOLBERG et al., 2008). 

The historical population consisted of 1,000 generations with a constant 

size of 1,600 individuals. Then, more 20 generations were generated 

decreasing to 800 individuals, mimicking a bottleneck event, in generation 

zero. Next, three populations were sequentially generated to create the 

desired linkage disequilibrium (LD, c+ ≈ 0.30). The first recent population (P1) 

consisted of 400 males and 400 females randomly sampled from the last 

historical generation. These individuals were randomly mated over only one 
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generation producing a offspring size of equal proportion of males and 

females. The next population, P2, consisted of an expansion population in 

which animals were randomly mated over 8 generations; each female 

produced 5 offspring. In the last population (P3) 12 males and 2,000 females 

were selected (i.e., effective population size (Ne) ≈ 50) from last generation of 

P2 based on highest phenotypes. Individuals in P3 were mated along 10 

generations to produce 2,000 offspring per generation, following positive 

assortative (matings among best males and females based on EBV) designs. 

In P3 each female produced only one progeny. Moreover, it was considered a 

sire replacement rate of 0.60 and a dam replacement rate of 0.20. Genomic 

information was available for 6,000 animals from generations 8 through 10. 

The simulated trait had phenotypic variance and mean of 1.0 and 

heritability of 0.30. Phenotypes were reconstructed as 	

q = ¢ + £ + { 

where q is the phenotype, ¢ is the overall mean, £ is the weighted sum of QTL 

effects (i.e., additive genetic effect or animal effect), { is the residual term. 

The simulated population was replicated 5 times and analyses were 

performed for all replicates. 

 

Variance components 
 

 Variance components were estimated using average information (AI) 

REML algorithm as implemented in the AIREMLF90 software (Misztal et al., 

2002), which was modified to incorporate the YAMS package (MASUDA et al., 

2014; MASUDA et al., 2015). The incorporation of YAMS was essential for this 

kind of task when using genomic information. The package applies supernodal 
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methods using multi-core optimized libraries (parallel computing). The most 

computational expensive part of the variance component estimation is 

obtaining the inverse of the coefficient matrix used in traces. To do that, 

efficient algorithms are used to invert large matrices, which are based on three 

steps (i) ordering, (ii) factorization (i.e., symbolic and numerical) and (iii) 

inversion. Ordering is not a mandatory step, but it can save a large amount of 

memory after factorization. For example, a zero element in the original matrix 

could become a nonzero element in the factorized matrix. This is called fill-in 

effect and can be minimized by ordering using appropriate techniques. In the 

next step, the coefficient matrix (LHS of the mixed model equations) is 

factorized into two triangular matrices by LU decomposition. Finally, the 

Takahashi algorithm can be used for inversion. The supernodal methods are 

expected to provide faster inversions, because it finds and processes dense 

blocks in sparse matrices (MASUDA et al., 2014). Note that inversion is only 

required to estimate variance components or to compute prediction error 

variance (PEV obtained by inverting the diagonal elements of LHS). If the 

objective is to solve the system of equations, iterative methods as the 

preconditioned conjugate gradient (LIDAUER et al., 1999; TSURUTA et al., 

2001) can be efficiently applied. 

Different models were used for the estimation of variance components. 

The difference on the models relies on which relationship matrices were used. 

The first model was designed to consider pedigree information to construct the 

genetic relationships among individuals (A matrix) as proposed by 

HENDERSON (1976).  
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The second model was based on the single-step method where the 

inverse of the realized relationship matrix (âg() is used in the mixed model 

equations instead of  àg(. Single-step genomic BLUP (ssGBLUP) is used for 

breeding value estimation, whereas ssGREML is used for variance 

components estimation. The inversion of H is calculated as following 

(AGUILAR et al., 2010): 

 

âg( = àg( + s
0 0

0 §ì
g(
− •à++

g(v 

 

where à is the usual pedigree-based relationship matrix (i.e., the same as in 

model A), à++g( is the inverse of pedigree-based matrix for genotyped animals 

computed by the algorithm described in COLLEAU (2002). The genomic 

relationship matrix (ì) was computed as in VANRADEN (2008): 

 

ì =
xx′

2∑')(1 − '))
 

 

where Z is the matrix of gene content centered for current allele frequencies, 

and ') is the allele frequency of SNP j.  

 

The § and • are scaling factors for ìß®©g(  and à++g(, respectively. In the 

past, these factors have been used to improve predictions by adjusting the 

differences between pedigree and genomic relationships. Instead of using 

scaling factors different from unit, inbreeding coefficients were considered 

when constructing the inverse of A. This would provide a better equivalence 
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between genomic and pedigree-based relationship matrices driving to a more 

similar genetic base. The ìß®©g(
 is the inverse of the genomic relationship matrix 

obtained by using the algorithm for proven and young (APY) (MISZTAL et al., 

2014; MISZTAL, 2016). In summary, consider that genotyped animals are 

arbitrarily divided into core (c) and noncore (n). In this algorithm, breeding 

values of noncore (£9) can be described as linear combinations of breeding 

values of core (™´) animals: 

 £9 = y9™´ + u9 

where y9 = ¨9(x′´x´ + Ä≠)
gÆx′´ is a matrix that relates breeding values of 

noncore and core animals and u9 is the Mendelian error term which has non-

diagonal variance but can be approximated to diagonal. In cases where the 

number of core animals is large enough, breeding values of noncore animals 

depend only on breeding values of core animals. The inverse of ìß®© is 

constructed as following:  

 

ìß®©
g( = p

Ä − y′´´ −yØ∞
� Ä

r Ç
±´´
gÆ �

� ±99
gÆ
Ö s
Ä − y´´ �

−y∞Ø Ä
v 

 

 If ì´´g( = (Ä − y′´´)±´´
g((Ä − y´´) is known, the complete inverse can be 

simplified to 

 

ìß®©
g( = s

ì´´
gÆ �

� �
v + p

−yØ∞
Ä
r±99

gÆ[−y∞Ø Ä] 

 

 Because ìày≤ is conditioned only on genotypic information of core 

animals, the matrix is sparser than the full ì regularly used in ssGBLUP (Figure 
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1). Note that the covariance between two noncore animals is null, but 

variances are stored in the matrix.  

 

 

Figure 1. Scheme representing sparsity pattern differences between regular 

genomic (GF) and APY genomic (GAPY) relationship matrices. 

 

 The number of animals in the core group was chosen as the number of 

largest eigenvalues of ì explaining 98% of variation (POCRNIC et al., 2016a). 

For computational reasons, the single value decomposition of Z was calculated 

instead of the eigenvalue decomposition of ì. Across the replicates, 

approximately 2,700 animals were randomly chosen as core. 

 

Scenarios 
 

Using ìß®©g(  helps to reduce computing time for genomic predictions 

(FRAGOMENI et al.; MASUDA et al., 2016) because of its sparsity; however, 

in the single-step approach, the combined âg( contains also àg( and à++g(, 
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which are rather dense. The APY method was earlier applied to the 

construction of à++
g( without success (Breno Fragomeni, personal 

communication). Although the sparsity of à++g( may not be a requirement for 

genomic predictions, it becomes essential for reducing computing time in 

variance components estimation. To increase the sparsity in àg( and à++g(, the 

reduction of generations was attempted. A total of eight different scenarios 

were designed differing on the amount of generations in pedigree used for 

variance components estimation. Reduction in the generations of phenotypes 

was also used to follow the incompleteness of pedigree and avoid bias. The 

scenarios were designed to mimic a real situation where usually the true 

founder population is unknown. Figure 2 shows the structure of pedigree, 

genotype, and phenotype files. Note that only three genotyped generations 

(6,000 youngest animals) were kept in the genotypic file for all analyses. For 

validation purposes, phenotypes for animals in the tenth generation (2,000 

youngest animals) were removed from the dataset. Subsequent scenarios 

were constructed by removing one generation of phenotypes and pedigree, a 

time, from the oldest to the youngest animals. 
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Figure 2. Structure of pedigree, phenotypic and genotypic data simulated with 

10 generations. The genotypic file remained the same for all scenario and was 

composed of 6,000 youngest individuals. A total of 2,000 individuals from the 

most recent generation was used as validation set. 

 

Inflation and accuracy of breeding values 
 

To evaluate the impact of increasing sparsity of  à++g( on genomic 

predictions, breeding values were also estimated in all scenarios. The 

regression coefficient of TBV on EBV was used as a measure of inflation of 

the prediction method; a value of one denotes EBV are not inflated. Validation 

accuracy (r) was computed as the correlation between TBV and (G)EBV from 

the animals in the tenth generation, that had their phenotypes removed from 

the analysis. 

In addition, prediction error variance (PEV) was used to calculate 

breeding value accuracy (r) usually computed on breeding programs as r =

≥1 − PEV ]∑
+⁄ ; here ]∑+ is the additive genetic variance estimated for each 

replicate and scenario. All the results were calculated as the mean of the 5 

replicates of each scenario. 
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RESULTS AND DISCUSSION 
 

Some previous studies focused on the implementation of APY for large 

scale genetic evaluations (MASUDA et al., 2016), breeding values accuracy 

(FRAGOMENI et al., 2015; LOURENCO et al., 2015), efficiency on real and 

simulated populations with different effective sample size (POCRNIC et al., 

2016a; POCRNIC et al., 2016b) and the impact of different core definitions 

(BRADFORD et al., 2017). In this study, we have addressed the impact of 

removing pedigree and phenotypic data on the feasibility of variance 

components estimation and on breeding value predictions using APY. 

Variance components were estimated using the AIREML method modified to 

incorporate the YAMS package for sparse matrix calculations (MASUDA et al., 

2014). 

 

Heritability estimates and computing performance 
 

Heritabilities using different number of generations under pedigree-

based and genomic-based variance components estimation are shown in 

Figure 3. Because the simulation involved some level of selection, the 

expected heritability is lower than the initial value of 0.3. Therefore, the 

scenario with 10 generations of pedigree was used as a benchmark. The use 

of less generations reduced the ability of pedigree-based model in estimating 

the benchmark heritability (0.30). Small fluctuations were observed when 

retaining only 3 to 5 generations of pedigree and phenotypes. In those 

scenarios, the drop-in heritability was almost nonexistent. Heritability 

estimates based on the pedigree relationship matrix followed an expected 
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trend based on quantitative theory for populations under selection (BULMER, 

1971). The use of full relationship matrix accounts for change in genetic mean, 

variance, genetic drift, and selection (KENNEDY et al., 1988). However, the 

lack of pedigree relationships or its incompleteness affects the ability to trace 

back gene frequencies and consequently the establishment of covariance 

between genotypic values. In this study, we might have two different sources 

of genetic variance changes. The first source is related to the lack of 

relationship knowledge because generations were removed in different 

simulated scenarios. Unknown relationships (i.e., wrong base population 

definition) affects the variance of Mendelian sampling in different intensities 

depending on how many parents are known, consequently affecting 

heritability. If both parents are unknown, Mendelian sampling is equal to ]∑+ 

and if only one parent is known, it equals to (0.75 − 0.25 × FÉ)]∑+ 

(HENDERSON, 1976). Under mixed models approach, breeding values are 

estimated as function of parent breeding values and Mendelian sampling. 

Thus, all animals with unknown relationship are treated as a sample from a 

base population with average breeding value 0 and common variance ]∑+. The 

second source of change in genetic variance is due to the presence of 

selection over generations, which affects the distribution of sire and dam 

breeding values. Unfortunately, it is impossible to identify each factor 

separately in this study because the scenarios were not drawn to that purpose. 
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Figure 3. Average heritability estimated using a pedigree (A) and genomic (GF 
and GAPY) animal model across five replicates. Here A is the traditional 
numerator relationship matrix, GF is the single-step method using a regular 
genomic inversion and GAPY is the single-step model using a APY inversion. 

 
The decrease in heritabilities based on genomic information using ìß®©g(  

was less than using only pedigree relationships (Figure 3). The trend observed 

for heritability was also observed for additive genetic variance (results not 

shown), meaning the changes were due to this component instead of residual 

variance. Although pedigrees were more limited after that, the combination of 

pedigree and genomic information did not allow further decrease in heritability. 

The ability to estimate the Mendelian sampling term combined to the 

compatibility between pedigree and genomic relationships may be the possible 

factors. Therefore, when APY is used for estimation of variance components, 

removing generations of phenotypes and pedigree may reduce computing 

time without being harmful for the estimation of variance components. 
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Computing resources 
 

Nowadays, a lot of effort is placed on developing faster and 

computationally feasible methods for an unlimited number of genotyped 

individuals. Iteration on data (IOD) by using PCG would be the best choice 

when the objective is estimating only breeding values. However, the estimation 

of variance components requires the trace of the coefficient matrix inversion. 

The possibility to conjugate APY (genomic) inversion, reduced pedigree, and 

YAMS (i.e., dense blocks operation) can be computationally beneficial. 

 

Inflation 
 

The degree of inflation from the breeding values is indicated by the 

coefficient of regression (b1) of TBV on (G)EBV (Figure 4). The optimal method 

for prediction of genetic merit of young animals would have a regression 

coefficient close to 1. Results showed that strong simulated selection provided 

divergent trend between genomic and pedigree-based model. Whereas an 

inflation is shown for pedigree-based models, we observed a deflation for 

genomic models. It seems the deflations was, at some extent, inversely 

proportional to the decay in heritability. As previously stated, relationship 

matrix can account for selection, drift, and assortative mating; however, it does 

not account for wrong base population. If it is assumed a wrong base 

population, then all subsequent breeding values may be inflated because 

genetic flow does not have the ability to account for changes in genetic means. 

This topic is especially important under single-step genomic evaluations. 

Single-step is a blending method of genotyped and ungenotyped individuals 
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are accommodated into âg( by the term (ì − à++)g(. If both matrices rely on 

different genetic base reference (as usually expected under livestock 

conditions), some inflation/deflation may appear. Differences may be due to 

several causes, for example due to different base population or mismatches 

on pedigree information (JUNQUEIRA et al., 2016). This is not a recent topic 

(POLLAK and QUAAS, 1983; WESTELL et al., 1988; MISZTAL et al., 2010; 

VITEZICA et al., 2011). More recently, LEGARRA et al. (2015) suggested the 

adoption of metafounders to accommodate different conditional means from 

one or several relationships between founders. 

 

 

Figure 4. Regression coefficient of true (simulated) breeding value on 
estimated breeding value ((G)EBV) using a pedigree (A) and genomic (GF and 
GAPY) animal model across five replicates. Here A is the traditional numerator 
relationship matrix, GF is the single-step method using a regular genomic 
inversion and GAPY is the single-step model using the APY inversion. 

 

Validation and breeding value accuracy 
 

The correlation (r) between true and (G)EBV for young animals 

(generation 10) was adopted as a measure of prediction accuracy (Figure 5). 
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As expected, genomic models provided greater correlations than pedigree-

based model; on average 25 points. In general, this is an important parameter 

because response to selection is proportional to accuracy (i.e., explicitly 

affects genetic gain on breeding schemes). Average correlation was not 

reduced when generations were removed from the pedigree. This would be an 

indicative that older generations are not effectively contributing to accuracy of 

breeding values on young validation animals (LOURENCO et al., 2014). It is 

important to recover that contributions between genetic ties decay by half each 

generation and distant ancestors might have a small influence on the recent 

genetic background. So, the inclusion of older ancestors may not be 

informative especially in breeding populations (i.e., under selection). 

 

 

Figure 5. Correlation (i.e., accuracy) between true (simulated) breeding value 
and estimated breeding value (GEBV) using a pedigree (A) and genomic (GF 
and GAPY) animal model across five replicates. Here A is the traditional 
numerator relationship matrix, GF is the single-step method using a regular 
genomic inversion and GAPY is the single-step model using the APY inversion. 
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Since true breeding values are unknown in real situations, accuracy of 

breeding values (r) is usually computed on breeding programs and delivered 

as a measure of precision. To calculate accuracy of breeding value, prediction 

error variances are required, and therefore, the inverse of the coefficient 

matrix. Results for r are presented in Figure 6. The ability of genomic 

information to provide greater breeding value accuracy than pedigree, as 

observed here, is reported elsewhere (PUTZ et al., 2018). In the same figure, 

it is possible to observe a greater decrease in breeding value accuracy for the 

pedigree-based model compared to the genomic-based model. Again, the 

combination of pedigree and genomic relationships in ssGBLUP avoided 

further drops when less information was available in the pedigree.  

 

 

Figure 6. EBV accuracy calculated based on prediction error variance (PEV) 
from pedigree (A) and genomic (GAPY) animal model across five replicates. 
Here A is the traditional numerator relationship matrix and GAPY is the single-
step model using the APY inversion. 
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CONCLUSION 
 

According to results presented in this study, single-step genomic 

models do not require a deeper pedigree relationship to estimate reliable 

variance components and breeding values. The use of APY algorithm does 

not affect the estimation of variance components. An extra of 2 ungenotyped 

generations are sufficient to compute reliable variance components; as well as 

breeding values and accuracies. 
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