
Abstract
Heterogeneous Amazonian landscapes and complex forest
stand structure often make aboveground biomass (AGB)
estimation difficult. In this study, spectral mixture analysis
was used to convert a Landsat Thematic Mapper (TM) image
into green vegetation, shade, and soil fraction images.
Entropy was used to analyze the complexity of forest stand
structure and to examine impacts of different stand struc-
tures on TM reflectance data. The relationships between AGB
and fraction images or TM spectral signatures were investi-
gated based on successional and primary forests, respec-
tively, and AGB estimation models were developed for both
types of forests. Our findings indicate that the AGB estima-
tion models using fraction images perform better for succes-
sional forest biomass estimation than using TM spectral
signatures. However, both models based on TM spectral
signatures and fractions provided poor performance for
primary forest biomass estimation. The complex stand
structure and associated canopy shadow greatly reduced
relationships between AGB and TM reflectance or fraction
images.

Introduction
The Brazilian Amazon basin has become one of the world’s
major contributors of carbon to the atmosphere due to its
high deforestation rates in recent decades (Fearnside and
Guimarães, 1996; Fearnside, 1999). Regional changes in
biomass have been associated with important outcomes in
ecosystem functional characteristics and climate change.
Biomass determines potential carbon emissions that could
be released to the atmosphere due to deforestation. Accurate
biomass estimation is necessary to understand the impacts
of deforestation on global change and environmental degra-
dation. During the past decade, research focusing on tropical
forest biomass estimation has attracted increasing attention
(Overman et al., 1994; Brown et al., 1995; Nelson et al.,
1999; Ketterings et al., 2001; Lu et al., 2002a). However,
biomass estimation over large areas in tropical regions is
difficult using traditional field inventory methods. The
advantages of remotely sensed data (e.g., multispectral and
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multitemporal images, a synoptic view, and a digital format
allowing computer processing) have made it an important
source for biomass estimation over large areas. In particular,
Landsat Thematic Mapper (TM) (Nelson et al., 1988; Sader
et al., 1989; Foody et al., 1996; Roy and Ravan, 1996; Boyd
et al., 1999; Nelson et al., 2000; Steininger, 2000; Lu et al.,
2002a; Foody et al., 2003; Vieira et al., 2003) and synthetic
aperture radar (SAR) (Rignot et al., 1995; Luckman et al.,
1997; Luckman et al., 1998; Santos et al., 2003) are the most
often used data for biomass estimation, which is based on
the statistical relationships between biomass and TM or SAR
responses. Although various biomass estimation methods
have been tested, rarely has research been successfully
conducted for large areas in moist tropical regions. Previous
research has shown the difficulty of estimating biomass
based on TM spectral features because of the influence of
increased canopy shadowing within large stands and the
heterogeneity of vegetation stand structures (Roy and Ravan,
1996; Steininger, 2000; Lu, 2001).

Optical sensor data such as TM mainly capture mixed
information over the vegetation cover: green leaves, canopy
shadows, stems and branches, understory cover, and even
soil beneath vegetation. Because of this complexity, changes
of TM spectral features often do not directly reflect changes
of biomass (Lu, 2001). This often leads to poor biomass
estimation results based solely on TM spectral features.
However, it may be possible to improve biomass estimation
results by reducing the influences caused by canopy shadow-
ing, stem and branch reflectance, and soil if different propor-
tions of selected features can be identified within the mixed
pixels. Linear spectral mixture analysis (LSMA) is often used
to decompose the mixed pixel values into different propor-
tions based on selected components (Roberts et al., 1998;
Shimabukuro et al., 1998; Lu et al., 2003) and has long
been recognized as an effective method in handling spectral
mixture problems. LSMA has been used to estimate different
biophysical parameters, such as abundance in heterogeneous
canopies (Gilabert et al., 2000), leaf area index (Garcia-Haro
et al., 1996; North, 2002), and net primary productivity (Hall
et al., 1995; Peddle et al., 1999; Peddle et al., 2001). In this
paper we evaluate the potential of biomass estimation using
LSMA in the Brazilian Amazon basin and the effects of forest
stand structure on TM reflectance and fractions.

Description of the Study Area
Rondônia has experienced high deforestation rates during
the past two decades (INPE, 2002). Following the national
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strategy of regional occupation and development, coloniza-
tion projects initiated by the Brazilian government in the
1970s played a major role in this process (Moran, 1981).
Most colonization projects in the state were designed to
settle landless migrants. The immigrants transformed the
forested landscape into a patchwork of cultivated crops,
pastures, and different stages of successional forests. Over
the Amazon region, 30 percent to 50 percent of the defor-
ested area is in some stage of secondary succession (Moran
et al., 1994; Skole et al., 1994; Lucas et al., 2000; Roberts
et al., 2002; Ballester et al., 2003), requiring that we care-
fully evaluate the biomass and carbon dynamics represented
by their dynamic vegetation components.

The study area is located at Machadinho d’Oeste in
northeastern Rondônia (Figure 1). Settlements were imple-
mented in the mid-1980s in this study area, thus very
limited deforestation occurred before 1988 as found on the
1988 TM image. However, deforestation rapidly increased in
the 1990s and converted the primary forest into coffee
plantation, agro-forestry, pasture, and successional forests.
The majority of successional forests were less than 10 years
old on the 1998 TM image, so the stand structure is signifi-
cantly different between successional and primary forests
in this study area. A detailed description of the characteris-
tics of successional and primary forests is described in Lu
et al. (2003).

In this study area, terrain is undulating, ranging from
100 m to 450 m above sea level. The primary tree communi-
ties are Imbauba, Lacre, Leguminosae, Mimosoideae, Para-

para, and Urucum. Several soil types, mainly alfisols, oxisols,
ultisols, and alluvial soils, were identified (Bognola and
Soares, 1999). The climate is classified as equatorial hot and
humid, with tropical transition. The well-defined dry season
lasts from June to August, the annual average precipitation
is 2,016 mm, and annual average temperature is 25.5° C
(Rondônia, 1998).

Methods

Field Data Collection and Biomass Calculation
Fieldwork was conducted in August 1999. The procedure
used for surveying vegetation was a multilevel technique
adapted from methods used at the Center for the Study of
Institutions, Population, and Environmental Change (Ostrom,
1998). Preliminary image classification and band composite
printouts indicated candidate areas to be surveyed, and a
flight over the areas provided visual insights about the size,
condition, and accessibility of each site. The surveys were
conducted in areas with relatively homogeneous ecological
conditions (i.e., topography, distance from water, and
land use) and uniform physiognomic characteristics. After
defining the area to be surveyed (plot sample), center points
for three sets of nested subplots (1 m2, 9 m2, and 100 m2)
were randomly located to cover the variability within the
plot sample (Lu et al., 2004). Seedlings were defined as
young trees or shrubs with a stem diameter smaller than
2 cm. Saplings were defined as young trees with a stem
diameter at breast height (DBH) greater than 2 cm and
smaller than 10 cm. Trees were defined as those woody
plants with a DBH equal to or greater than 10 cm. Total tree
height, stem height (the height of the first main branch), and
DBH were measured for all trees in the three, 10 m � 10 m
subplots within each plot. Height and DBH were measured
for all saplings in the three nested 3 m � 3 m subplots.
Ground-cover estimation and individual counting were
carried out for seedlings and herbaceous vegetation in the
three nested 1 m � 1 m sub-plots. The aboveground biomass
was then aggregated at the plot level based on the measure-
ments in nested subplots. Every plot was registered with a
global positioning system to allow further integration with
spatial data in geographic information systems and image
processing systems. Forty sample plots were inventoried,
including 26 plots for successional forests and 14 for
primary forests. Table 1 summarizes the sample plot allocation

Figure 1. Location of Machadinho d’Oeste in the state
of Rondônia, Brazil.

TABLE 1. SAMPLE PLOT DISTRIBUTION WITH BIOMASS DENSITY AND

STATISTICAL CHARACTERISTICS OF THE SAMPLE DATA IN SUCCESSIONAL AND

PRIMARY FORESTS IN RONDÔNIA, BRAZIL

Successional Forest Primary Forest

Range of Number Range of Number 
Biomass of Biomass of
Density Sample Density Sample 
(kg/m2) Plots (kg/m2) Plots

Plot distribution 2–5 8 10–15 4
vs. range of 5–8 4 15–20 2
biomass 8–11 6 20–25 2
density 11–14 5 25–30 2

14–17 3 30–50 4
Total plots 26 14
Statistical Mean 8.930 24.765

information Minimum 2.397 11.132
of biomass Maximum 15.987 49.470
density Std. Dev. 4.349 11.805
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with biomass distribution and statistical description of
collected data for successional and primary forests.

Equation 1 was used to calculate individual tree
biomass (Brown et al., 1995), and Equation 2 was used to
calculate individual sapling biomass (Honzák et al., 1996):

(1)

(2)

where DT and DS are the tree and sapling DBH in centime-
ters, respectively; H is the total tree or sapling height in
meters; and YT and YS are the biomasses in kilograms of
individual trees and saplings, respectively. Aboveground
biomass (AGB) in kg/m2 is then calculated through Equation 3:

(3)

where m and n are the total number of trees and saplings,
respectively, in the three nested subplots within one plot.
PA and SPA are the total subplot areas (in m2) in one plot
for measuring trees (i.e., three 10 m � 10 m) and saplings
(i.e., three 3 m � 3 m), respectively.

Analysis of Forest Stand Structure
Different tree parameters, such as tree height, DBH, crown
size, etc. may be used to describe the characteristics of
forest stand structure. In particular, the distribution of tree
height is a good way to illustrate the vertical structure of a
forest stand. In this research, entropy (ENT) was used to
evaluate the complexity of a stand structure based on the
probability of tree height distribution at the plot level. It
can be expressed as

(4)

where Pi is the probability for ith tree height, ni is the number
of trees in the ith tree height, j is the minimum tree height,
and h is the maximum tree height. For successional forest
plots, j is equal to or greater than 5 m because the majority
of trees have heights greater than 5 m. For primary forest,
j is equal to or greater than 10 m, because the majority of
trees have heights greater than 10 m. In general, higher
complexity in the forest stand structure yields a higher ENT
value.

In a forested area, an emergent has considerable influ-
ence on its neighboring vegetation and impacts remotely
sensed observations due to its height and large crown and
associated shade. Entropy can effectively reflect the complex-
ity of forest stand structure, but cannot reflect the impacts
from emergent. So to compensate the difference of maximum
and minimum values of the tree height, the adjusted entropy
(ADJENT) was defined as:

(5)

A linkage of ADJENT data with relationships between AGB
and TM spectral signatures or fraction images can be used to
analyze how different stand structures affect vegetation
reflectance and fraction composition, then further to analyze
the impacts of the stand structures on AGB estimation.

The boxplot method was used to illustrate how biomass
growth affects TM reflectance and fraction changes. A box-
plot is a summary plot based on the median, quartiles, and
extreme values. The box represents the inter-quartile range
that contains 50 percent of the values. The whiskers are

� 0.1 * (h � j) * ENT.

ENT � �a
h

i�j
Pi log2 (Pi) and Pi �

ni

a
h

i�j
 ni

,

AGB � a
m

i�1
YTi /PA � a

n

j�1
YSj /SPA,

YS � exp [�3.068 � 0.957 � ln (DS2 � H)],

YT � 0.0326 � DT2 � H, and

lines that extend from the box to the highest and lowest
values, excluding outliers. A line across the box indicates
the median. Five biomass groups for successional forests
(i.e., 2–5, 5–8, 8–11, 11–14, and 14–17 kg/m2) and for
primary forests (10–15, 15–20, 20–25, 25–30, and 30–50
kg/m2), respectively were analyzed. Three to eight sample
plots for each successional forest group, and two to four
plots for each primary forest group were aggregated.

TM Image Preprocessing
Accurate geometric rectification and atmospheric calibration
are two important aspects in image preprocessing. In this
research, TM data acquired on 18 June 1998 were geometri-
cally rectified using control points taken from topographic
maps at 1:100000 scale (Universal Transverse Mercator,
South Zone 20). Nearest-neighbor re-sampling was used, and
a root-mean-square error with less than 0.5 pixels was
obtained. An improved image-based dark object subtraction
model was used to implement atmospheric correction (Lu
et al., 2002b). The gain and offset for each band and sun
elevation angle were obtained from the image header file,
and the path radiance was identified based on clear water
for each band. The atmospheric transmittance values for
visible and near infrared bands were the averages for each
spectral band derived from radiative transfer code (Chavez,
1996). For shortwave infrared bands, the atmospheric
transmittance was set to 1. The surface reflectance values
after calibration fell within the range of 0 to 1. For the
convenience of data analysis, the reflectance values were
rescaled to the range of 0 to 100 by multiplying 100 for each
pixel.

Linear Spectral Mixture Analysis (LSMA)
LSMA is a physically based image processing method. It
assumes that the spectrum measured by a sensor is a linear
combination of the spectra of all pure materials (endmem-
bers) within the pixel (Roberts et al., 1998). The mathematic
model of LSMA can be expressed as

(6)

where i is the number of spectral bands used; k � 1, . . . ,
n (number of endmembers); Ri is the spectral reflectance of
band i of a pixel that contains one or more endmembers; fk
is the proportion of endmember k within the pixel; Rik is the
known spectral reflectance of endmember k within the pixel
on band i; and �i is the error for band i. A detailed descrip-
tion of the LSMA approach can be found in Roberts et al.
(1998) and Mustard and Sunshine (1999).

Although much research for endmember selection has
been explored (Bateson and Curtiss, 1996; Tompkins et al.,
1997; Roberts et al., 1998; Mustard and Sunshine, 1999; Van
der Meer, 1999; Dennison and Roberts, 2003), the image
endmember is still the often used approach in many appli-
cations of LSMA because it can be obtained easily and
represents spectra measured at the same scale as the data
(Roberts et al., 1998). The endmembers are often derived
from the extremes of the image feature space, assuming they
represent the purest pixels in the images (Mustard and
Sunshine, 1999; Lu et al., 2003). In this research, three
image endmembers (shade, soil, and green vegetation (GV))
were identified from the scattergrams of TM3 and TM4 and of
TM4 and TM5. A constrained least-squares solution was used
to un-mix the TM image into three fraction images.

Integration of Image Data and Vegetation Inventory Data
A window size of 3 � 3 pixels was used to create an area of
interest (AOI) for each plot using ERDAS Imagine® software.

Ri � a
n

k�1
fk Rik � �i ,

ADJENT
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Retrieval of mean value for each plot on TM reflectance or
fraction images was conducted based on an overlay of the
AOI layer on corresponding TM or fraction images. After the
image values for these plots of successional and primary
forests were extracted, Pearson’s correlation coefficient was
used to analyze relationships between AGB and image data,
including TM spectral and fraction data. Because the correla-
tion coefficient measures the strength of linear relationships
between two variables (Runyon et al., 2000), the analysis of
correlation coefficients provides a way to find potential
variables for developing AGB estimation models. The AGB
was used as a dependent variable, TM spectral bands or
fraction images were used as independent variables, and a
stepwise regression analysis was used to develop AGB
estimation models for successional and primary forests. The
coefficient of determination (R2) is used to evaluate a
regression model performance because it measures the
percent of variation explained by the regression model.

Results and Discussion

Impacts of Forest Stand Structure on Biomass Estimation
Vegetation stand structure and associated canopy shadows,
canopy closure, and species composition were regarded
as important factors affecting the vegetation reflectance
captured by optical sensors (Steininger, 2000; Lu, 2001).
Figure 2 graphically illustrates the relationships between TM
spectral signatures and AGB. Bands 1, 2, and 3 are not
shown in Figure 2 because they often have relatively weak
correlations with AGB (Lu, 2001). For successional forests,
vegetation reflectance in shortwave infrared bands (TM5 and
TM7) decreases slightly as AGB increases, but such decrease
in near infrared band (TM4) is obvious. For primary forest,
the relationship between reflectance and AGB is not obvious,
although AGB varies greatly from approximately 11 kg/m2 to
50 kg/m2. This implies that the reflectance of primary forest
is saturated due to its complex stand structure.

Figure 3 graphically illustrates the relationships of the
GV and shade fractions with AGB. The soil and error fractions

are not shown in this graph because of their weak correla-
tions with AGB and very small values for successional
and primary forests. For successional forests, GV fraction
obviously decreases but shade fraction increases as AGB
increases. In primary forest, the relationship of shade or GV
fraction with AGB is not as obvious as biomass increases.

An obvious feature in Figures 2 and 3 is the gap in
reflectance (especially band 4) and fraction values between
successional and primary forests. Such a situation was
caused by the sample data collected in this study area. The
different vegetation stand structures between successional
and primary forests (Lu et al., 2003) lead to an abrupt
change in the spectral signatures or fraction values between
them. However, the trends of differences in TM reflectance
or fraction values between successional and primary forests
implies that these gaps would decrease or disappear as
successional forests grow to more mature stages. Another
obvious feature is a small peak in TM5 when AGB falls in the
8–11 kg/m2 group in successional forests and a small trough
in TM4 in primary forest when AGB falls in the 25–30 kg/m2

group (see Figure 2). A similar situation occurs in shade
fraction in successional forests and in shade and GV frac-
tions in primary forest (see Figure 3).

The stand structures in primary forest are more complex
than in successional forests, particularly for those sites with
large AGB amounts. In initial succession, seedlings and
saplings account for most of the AGB amount. The lack of
stratification and a structured canopy of trees results in high
GV but low shade fraction values. In advanced succession,
trees occupy the canopy with obvious stratification of
multilayer structures. This feature results in significantly
reduced GV fraction but increased shade fraction compared
with initial succession. In primary forest, the majority of the
AGB is in woody vegetation, and a well-stratified and well-
structured vegetation stand is formed. This makes a lower
GV fraction but higher shade fraction than successional
forests. In those sites with large AGB, the higher canopy
shadow caused by emergents is one of the main factors
resulting in data saturation, particularly in primary forests.

Table 2 illustrates the complexity of forest stand struc-
ture for selected plots. In general, the forest stand structure

Figure 2. Comparison of relationships between above-
ground biomass and TM reflectance values (bands TM4,
TM5, and TM7) of successional and primary forests.

Figure 3. Comparison of relationships between above-
ground biomass and endmember fractions (green
vegetation and shade fractions) of successional and
primary forests.
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becomes more complex as AGB increases. The important
influence of emergents on the complexity of stand structure
is obvious. For example, the emergents in sample plots
RO-12, RO-25, RO-04, and RO-32 in the successional forest
category and RO-41, RO-35, and RO-39 in the primary forest
category create more complex stand structure and associated
canopy shades than others. Linkage of the ADJENT values and
corresponding relationships between AGB and TM spectral
signatures or fraction images can effectively explain the
peaks and troughs that appear in Figures 2 and 3. For
example, in successional forests, there are six sample plots
in the 8–11 kg/m2 group, but two of the plots have obvi-
ously simpler stand structures compared to the neighboring
groups (the ADJENT values for RO–15 and RO–11 plots are
less than 1.46). The relatively simple stand structure leads
to a higher reflectance in TM5 and lower shade fraction than
normal because of less impact from canopy shadows. In
contrast, the complex stand structure of primary forest in
the two sample plots falling in the 25–30 kg/m2 group (the
ADJENT values for RO-41 and RO-35 plots are greater than
5.2) yield lower reflectance in TM4 and higher shade but
lower GV fractions than in neighboring groups (i.e., 20–25
and 30–50 kg/m2 groups in Figures 2 and 3, respectively).
The canopy shade increases when canopies become more
heterogeneous with increasing numbers of gaps and emer-
gents. The presence of gaps and emergents accounts for

increasing shade, leading to higher shade fraction but lower
GV fraction. Primary forests in different sites have highly
variable AGB amounts depending on the soil condition,
topography, and degradation by selective logging or fire.
However, complex vegetation stand structures in primary
forest and in advanced successional forests often result in
similar TM reflectance even if AGB varies significantly. A
similar situation is also found in other study areas such as
in Manaus and Altamira of the Brazilian Amazon, where
canopy reflectance of the successional forests saturated
when biomass density increased to about 15 kg/m2 or
vegetation ages reached over 15 years (Steininger, 2000;
Lu, 2001). However, different soil conditions and land-use
history significantly affect the vegetation growth, resulting in
significantly different stand structures even if their vegeta-
tion ages are similar (Moran et al., 2000). For example,
the poor soil condition and long-term land use history in
Bragantina make the vegetation growth rate much lower than
in other study areas such as Altmaira, resulting in much
simpler stand structure and species composition (Lu, 2001).
In this situation, 70-year-old successional forests still can be
separated from primary forest based on TM spectral signa-
tures (Vieira et al., 2003). The biomass density of 70-year-
old successional forests in Bragantina is only approximately
14 kg/m2 (Vieira et al., 2003), while in Altamira the biomass
density can be 20 kg/m2 for 15 year old (Lu et al., 2002a)

TABLE 2. COMPARISON OF VEGETATION STAND STRUCTURES AMONG THE SELECTED SAMPLE PLOTS

Biomass Tree Height Number Diff. of Biomass
Forest Type Plot_ID Density (kg/m2) Range (m) of Trees ENT Range (m) ADJENT Range (kg/m2)

Successional RO-08 2.965 5–6 1 0 1 0 2–5
Forests RO-10 3.397 9–11 2 1.000 2 0.200

RO-03 3.597 6–11 16 1.592 5 0.796
RO-21 3.891 6–11 13 1.296 5 0.648
RO-19 3.909 5–11 16 2.125 6 1.275
RO-16 4.297 6–11 9 2.059 5 1.030
RO-23 4.644 7–15 16 2.578 8 2.062
RO-07 4.947 8–13 19 2.104 5 1.052
RO-28 6.418 6–14 16 2.750 8 2.200 5–8
RO-05 7.695 7–14 20 2.526 7 1.768
RO-43 7.700 6–16 19 3.076 10 3.076
RO-26 7.910 8–16 18 2.642 8 2.114
RO-20 8.505 7–16 23 2.703 9 2.433 8–11
RO-15 8.538 7–13 34 2.131 6 1.279
RO-31 8.956 8–17 30 2.376 9 2.138
RO-37 9.259 7–16 27 2.712 9 2.441
RO-11 9.297 7–13 24 2.422 6 1.453
RO-38 10.578 6–16 28 3.101 10 3.101
RO-24 12.364 7–17 18 2.858 10 2.858 11–14
RO-02 12.510 9–19 27 2.980 10 2.980
RO-12 12.763 5–20 16 2.899 15 4.349
RO-13 12.771 9–18 24 2.834 9 2.551
RO-25 12.804 5–18 33 3.279 13 4.263
RO-06 14.812 6–18 21 2.887 12 3.464 14–17
RO-04 14.963 9–22 40 3.485 13 4.531
RO-32 15.610 7–23 39 3.099 16 4.958

Primary RO-36 11.132 10–18 10 2.722 8 2.178 10–15
Forests RO-42 12.500 10–18 16 2.656 8 2.125

RO-40 12.677 10–26 11 3.278 16 5.245
RO-33 13.401 10–17 13 2.412 7 1.688
RO-34 17.500 10–20 21 3.006 10 3.006 15–20
RO-14 19.263 10–22 18 2.933 12 3.520
RO-01 21.027 10–24 27 3.288 14 4.603 20–25
RO-09 24.370 11–25 21 3.237 14 4.532
RO-41 26.542 10–27 18 3.110 17 5.287 25–30
RO-35 28.863 10–29 17 3.058 19 5.810
RO-30 32.871 11–31 14 2.692 20 5.384 30–50
RO-39 34.843 10–32 17 3.007 22 6.615
RO-27 42.244 10–21 49 3.092 11 3.401
RO-17 49.170 11–26 19 3.195 15 4.793

04-024.qxd  6/30/05  10:33 AM  Page 971



972 Augu s t 2005 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

and in this study area it can be 15 kg/m2 for 12 year old
forests.

Relationships Between Biomass and Fraction Images and TM Spectral
Signatures
Table 3 provides the correlation coefficients between frac-
tions and AGB. For comparison, the correlations between TM
spectral signatures and AGB are also provided in this table.
For successional forests, GV fraction is strongly negatively
correlated with AGB (�0.89), but the shade fraction is
strongly positively correlated (0.88). The GV and shade
relationships with AGB are slightly stronger than the relation-
ships between TM spectral signatures and AGB (the highest
coefficient between AGB and band TM4 is �0.86). However,
the soil fraction is weakly correlated with successional forest
AGB (�0.03). For primary forest, the GV and shade fractions
are very weakly correlated with AGB. A similar situation for
TM data is that no TM bands are significantly correlated with
primary forest biomass. In contrast, the soil fraction has
a stronger relationship with AGB than with GV and shade
fractions. The shortwave infrared bands (TM5 and TM7) have
stronger relationship with AGB than visible and near infrared
bands. The strong relationships between successional forest
biomass and GV or shade fraction implies that GV or shade
fraction is suitable for successional forest biomass estima-
tion, but the weak relationship between primary forest
biomass and fractions imply that they may be not suitable
for primary forest biomass estimation. A similar conclusion
is that TM spectral signatures, especially the band TM4 in
this study, may be suitable for successional forest biomass
estimation but no spectral bands are suitable for primary
forest biomass estimation.

Checking the relationships between primary forest
biomass and soil (�0.425) or error fraction (�0.445) indi-
cated that three endmembers (GV, shade, and soil) may be
insufficient to un-mix the mixed pixels of primary forest into
proportions of the different endmembers. Because of the
complexity of forest stand structures in primary forest and
impacts of sun elevation angle, the optical sensors may
capture some information of non-photosynthetic vegetation
(NPV), such as tree stems and branches. This information was
mixed in soil and error fractions when only three endmem-
bers were used (Roberts et al., 1998). Hence, stratification
of successional and primary forests may be an alternative
to improve the quality of fraction images for the primary
forests. The NPV, GV, and shade endmembers may be more
suitable than GV, shade, and soil endmembers for unmixing
primary forest. Some previous research used four endmem-
bers (NPV, GV, soil, and shade, selecting from a combination
of reference and image endmembers) in the LSMA approach
in tropical forests (Roberts et al., 1998) and has shown to
be valuable for land-cover classification. Using reference

endmembers based on field reflectance measurements has the
potential to provide better fraction results than using image-
based endmembers (Roberts et al., 1998). However, selecting
an NPV endmember based on the image itself is often diffi-
cult. Also, nonlinear spectral mixture analysis may be more
appropriate in vegetation studies because significant multiple
scattering of photons occurs in the vegetation (Ray and
Murray, 1996). However, nonlinear mixture models are often
difficult to build and convert (Gong and Zhang, 1999), and
more research will be necessary in the future.

Aboveground Biomass Estimation
AGB estimation models were developed based on the integra-
tion of sampled data from the field measurements and
retrieved image values. Table 4 summarizes the best regres-
sion models for the successional and primary forests, based
on TM bands and fraction images. The stepwise regression
analysis of TM spectral bands and fraction images indicated
that two or more TM images or fraction images can not
significantly improve the regression performance. This is
because strong correlations exist between some TM spectral
bands used (e.g., bands TM2 and TM3) and between fraction
images (e.g., strongly negative correlation between GV and
shade fractions) or because weak relationships exist between
AGB and some image data (e.g., between AGB and TM1, or
between AGB and soil fraction).

For successional forests, the regression model using the
GV fraction slightly improved estimation performance (i.e.,
0.785) compared with using TM spectral band (0.746). The
transformation of the GV fraction, i.e., GV/(1-GV), further
increased the regression coefficient (from 0.785 to 0.812). For
primary forest, neither fractions nor spectral signatures can
provide good model performance for biomass estimation.

Our analysis indicates that using Landsat TM image is
more successful for biomass estimation in successional
forests than in primary forests. The complexity of forest
stand structure in primary forest is the main factor making
the biomass estimation difficult. Different soil conditions
and topography can significantly influence vegetation
growth and biomass accumulation rates (Moran et al., 2000;
Lu et al., 2002c). In order to improve primary forest biomass
estimation, some possible approaches (development of NPV
fraction using LSMA, a combination of spectral and textures,
incorporation of optical and SAR L-band or lidar data, and
use of multi-source data such as spectral, texture, and
ancillary) may improve the biomass estimation performance
(Lu, 2001). Also, use of neural network for biomass estima-
tion may provide better results than regression-based
approaches (Foody et al., 2003). More research is needed for
primary forest biomass estimation.

TABLE 3. CORRELATION COEFFICIENTS BETWEEN AGB AND FRACTIONS OR TM
REFLECTANCE FOR SUCCESSIONAL FORESTS (SF) AND PRIMARY FOREST (PF)

Fractions Spectral Signatures

Fraction SF PF TM SF PF

Soil �0.033 �0.425 TM 1 �0.163 0.057
GV �0.886a 0.075 TM 2 �0.550b 0.015
Shade 0.879a 0.088 TM 3 �0.455b 0.040
Error 0.134 �0.445 TM 4 �0.864a 0.032

TM 5 �0.695a �0.397
TM 7 �0.515b �0.287

aCorrelation is significant at the 0.01 level.
bCorrelation is significant at the 0.05 level.

TABLE 4. COMPARISON OF REGRESSION MODELS USING TM SPECTRAL AND

FRACTION IMAGES FOR SUCCESSIONAL FORESTS (SF) AND PRIMARY FOREST (PF)

Type Variable Regression Models R2

SF Fraction Biomass � 48.674 – 57.904 � GV 0.785
Biomass � 23.787 – 6.47 � GV/(1-GV) 0.812

Spectral Biomass � 66.772 – 1.392 � TM4 0.746
Ln(biomass) � 7.853 – 0.14 � TM4 0.697

PF Fraction Biomass � 33.284 – 414.143 � Soil 0.181
fraction

Ln(biomass) � 3.386 – 13.688 � Soil 0.120
fraction

Spectral Biomass � 102.414 – 5.496 � TM5 0.158
Ln(biomass) � 6.626 – 0.249 � TM5 0.198

Note: Ln(biomass) � the natural logarithm of biomass; GV � green
vegetation fraction; R2 � coefficient of determination.
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Conclusions
This paper explored the relationships between AGB and TM
reflectance and between AGB and fractions and compared
their biomass estimation performances. Our findings indicate
that band TM4 and GV fraction are the most suitable of the
variables tested for successional forest biomass estimation.
Using the GV-based regression model improved the biomass
estimation performance for the successional forest. However,
neither TM reflectance nor fractions is suitable for primary
forest biomass estimation. Canopy shadow and complex
biophysical characteristics degrade AGB estimation perform-
ance using TM data. The ADJENT values indicated important
impacts of complex forest stand structures on TM data, so
methods to reduce the impacts of stand structures will be an
important aspect to improve biomass estimation performance.
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