## Ministério da Agricultura do Abastecimento e da Reforma Agrária Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Centro Nacional de Pesquisa de Florestas - CNPFlorestas

# Seleção Genética Computadorizada - Selegen -

MÓDULO 1
\*BEST PREDICTION\*

MANUAL DO USUÁRIO Versão 1.0

> Colombo, PR 1994



## Ministério da Agricultura do Abastecimento e da Reforma Agrária Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Centro Nacional de Pesquisa de Florestas - CNPFlorestas



# SELEÇÃO GENÉTICA COMPUTADORIZADA - SELEGEN MÓDULO 1 - \* BEST PREDICTION \*

MANUAL DO USUÁRIO Versão 1.0

> Colombo, PR 1994

## República Federativa do Brasil

Presidente: Itamar Franco

## Ministério da Agricultura, do Abastecimento e da Reforma Agrária Ministro: Synval Sebastião Duarte Guazzelli

Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA

Presidente: Murilo Xavier Flores Diretores: José Roberto Rodrigues Peres Alberto Duque Portugal Elza Angela Battaggia Brito da Cunha

## Centro Nacional de Pesquisa de Florestas-CNPFlorestas

Chefe: Vitor Afonso Hoeflich Chefe Adjunto Técnico: Yeda Maria M. de Oliveira Chefe Adjunto de Apoio: Sergio Gaiad



## Ministério da Agricultura do Abastecimento e da Reforma Agrária Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Centro Nacional de Pesquisa de Florestas - CNPFlorestas

# SELEÇÃO GENÉTICA COMPUTADORIZADA - SELEGEN MÓDULO 1 - \* BEST PREDICTION \*

MANUAL DO USUÁRIO

Versão 1.0

Marcos Deon Vilela de Resende Edilson Batista de Oliveira Luiz Candido Melinski Fernando Silvera Goulart Junior Gerson Rino Prantl Oaida Exemplares desta publicação podem ser solicitados à: EMBRAPA - CNPFlorestas Estrada da Ribeira, km 111 Caixa postal, 319 83411-000 - Colombo - PR - Brasil

Telefone: (041) 359-1313

Telex: (41) 30120 Fax: (041) 359-2276

Tiragem: 200 exemplares

Resende, M.D.V.de.

Seleção genética computadorizada - SELEGEN módulo 1 - best predicion; manual do usuário versão 1.0., por Marcos Deon Vilela de Resende, Edilson Batista de Oliveira, Luis Candido Melinski, Fernando Silvera Goulart Junior, Gerson Rino Prantl Oaida. Colombo: EMBRAPA-CNPFlorestas, 1994.

32p.

1. SELEGEN-manual. 2. Software-genética. I. Oliveira, E.B.de. II. Melinski, L.C. III. Goulart Junior, F.S. IV. Oaida, G.R.P. V. Título.

## COMITÊ DE PUBLICAÇÕES DO CNPFlorestas

#### 1993/1995

Vitor Afonso Hoeflich - Presidente

Yeda Maria M. de Oliveira - Substituto

Titulares

Carlos Alberto Ferreira

Jarbas Yukio Shimizu

Antonio Aparecido Carpanezzi

Rivail Salvador Lourenço

Moacir José Sales Medrado

Guilherme de Castro Andrade

Antonio Maciel Botelho Machado

Lidia Woronkoff

Suplentes

José Elidney Pinto Junior

Sergio Ahrens

Edson Tadeu lede

Emilio Rotta

Sergio Gaiad

Gustavo Ribas Curcio

Carmen Lúcia Cassilha Stival

Guiomar M. de S. Braguinia - Sec. Exec. José Nogueira Junior - Rev. Gramat.

PRODUÇÃO

Setor de Difusão de Tecnologia - SDT

TRATAMENTO EDITORIAL E REVISÃO DE TEXTO

Guiomar Moreira de Souza Braguinia

COMPOSIÇÃO E DIAGRAMAÇÃO

Guiomar Moreira de Souza Braguinia Claudia de F. da Costa

> IMPRESSÃO Gráfica Capital

## SUMÁRIO

|    | ragi                                          | IIa  |
|----|-----------------------------------------------|------|
| 1. | APRESENTAÇÃO                                  | 07   |
| 2. | OBJETIVOS GERAIS                              | 07   |
| 3. | OBJETIVO ESPECÍFICO                           | 08   |
| 4. | PROCEDIMENTOS DE GENÉTICA ESTATÍSTICA         | 80   |
| 5. | INSTALAÇÃO E ESPECIFICAÇÕES                   | 09   |
|    | 5.1. Configuração Mínima                      | 09   |
|    | 5.2. Configuração Recomendada                 | 09   |
|    | 5.3. Procedimentos para Instalação do Sistema | 09   |
|    | 5.4. Arquivo de dados                         | 10   |
| 6. | EXECUÇÃO DO SISTEMA                           | .10  |
|    | 6.1. Navegação no Sistema                     | .10  |
|    | 6.2. Manutenção / Conversão                   | .11  |
|    | 6.3. Entrada de Dados/Informações Biológicas  | . 13 |
|    | 6.4. Análises                                 | . 14 |
|    | 6.5. Resultados                               | . 17 |
| 7. | SAÍDA DO SISTEMA                              | .24  |
| 8. | MENU GLOBAL DO PROGRAMA E RESULTADOS GERADOS  | .24  |
| 0  | DEEEDÊNCIAS DIDI IOCDÁFICAS                   | 20   |

## SELEÇÃO GENÉTICA COMPUTADORIZADA - SELEGEN "BEST PREDICTION"



Marcos Deon Vilela de Resende Edilson Batista de Oliveira Luiz Candido Melinski Fernando Silvera Goulart Junior Gerson Rino Prantl Oaida

## 1. APRESENTAÇÃO

O Sistema SELEGEN - Seleção Genética Computadorizada é um software destinado à seleção de indivíduos (plantas ou animais) superiores com base em seus respectivos valores genéticos (breeding values). Desenvolvido para ambiente IBM PC/DOS, este programa é fundamentado em algorítmos que maximizam a eficiência do processo seletivo, em função das diferentes situações experimentais. É portanto, ferramenta de grande utilidade aos programas práticos de melhoramento genético.

O presente módulo é denominado "Best Prediction" para denotar que os métodos empregados são indicados para situações em que não existem grandes desbalanceamentos de dados, ou seja, para situações em que todos os indivíduos candidatos à seleção apresentam aproximadamente a mesma quantidade (número) e qualidade (precisão) de informações. O termo "Best Prediction",conforme relatado por HENDERSON (1977), implica no uso de um mesmo grupo de pesos (ponderadores das diferentes informações fenotípicas), generalizadamente para todos os candidatos à seleção.

#### 2. OBJETIVOS GERAIS

O programa SELEGEN foi desenvolvido especialmente para o melhoramento genético de espécies perenes, nas quais a entidade genética "indivíduo" é preponderante em relação às outras entidades genéticas formadas por grupos de indivíduos (família, por exemplo). Assim, foram consideradas peculiaridades associadas à avaliação e seleção de indivíduos superiores, tais quais: pequeno número de indivíduos por família nos experimentos; equivalência entre unidade de seleção e unidade de recombinação, importância da seleção com base em múltiplas características; avaliações em várias idades ou estágios de desenvolvimento; importância da quantificação do tamanho efetivo populacional; relevância da restrição ao incremento da endogamia nos métodos de seleção; relevância do estabelecimento de distintas

"Analista de Sistemas, B.Sc., EMBRAPA - Centro Nacional de Pesquisa de Florestas.

<sup>&</sup>lt;sup>\*</sup> Eng.-Agrônomo, Mestre, CREA nº 50602/D e 1211/D, respectivamente, Pesquisador da EMBRAPA - Centro Nacional de Pesquisa de Florestas.

populações de produção de propágulos melhorados e de melhoramento, dentre outras.

Dessa forma, o SELEGEN é indicado especialmente para o melhoramento de espécies perenes e semi-perenes como: espécies florestais, espécies animais avaliadas em delineamentos com repetições, espécies frutíferas e espécies forrageiras, dentre outras. Entretanto, pode ser também utilizado eficientemente para o melhoramento de plantas anuais, pois apresenta 42 diferentes métodos de seleção, que podem ser aplicados opcionalmente para uma mesma estrutura experimental.

Dentre os diferentes métodos, 28 são multivariados e 14 univariados, fato que propicia um uso eficiente de todas as informações (dados) disponíveis, de acordo com os diferentes objetivos do melhoramento genético. O software pode ser aplicado em espécies alógamas, autógamas, (monóicas e dióicas) e com sistema reprodutivo misto (desde que se conheça a taxa de autofecundação).

#### 3. OBJETIVO ESPECÍFICO

O desenvolvimento do programa objetivou colocar à disposição dos melhoristas florestais ferrramentas precisas de seleção genética visando a maximização da eficiência dos programas de melhoramento genético. Assim, adotou-se linguagem científica comumente empregada por melhoristas florestais, visando maior facilidade de uso por parte deste público alvo.

## 4. PROCEDIMENTOS DE GENÉTICA ESTATÍSTICA

Os procedimentos de genética quantitativa empregados no programa foram abordados com detalhes em várias publicações. A seguir são relacionados, por temas, alguns trabalhos (com espécies florestais) realizados no Brasil que abordam metodologías e conceitos empregados no programa: seleção individual e seleção entre e dentro de progênies (KAGEYAMA & VENCOVSKY, 1983): seleção entre e dentro de progênies com equivalência entre unidade de seleção e unidade de recombinação (RESENDE, 1991); índice de seleção multivariado (RESENDE et al, 1990); estimação de valores genéticos e índice de seleção univariado utilizando informações de parentes (RESENDE & HIGA, 1992; BUENO FILHO, 1992), índice de seleção univariado multiefeitos (RESENDE & HIGA, 1993); índice de seleção incluindo avaliações repetidas no tempo e índice de seleção multivariado, combinando informações de parentes (RESENDE et al, 1993a); predição de valores genéticos com dados desbalanceados (RESENDE et al, 1993b); seleção em populações com sistema reprodutivo misto (RESENDE et al, 1994); seleção em espécies florestais autógamas (RESENDE & MEDRADO, 1994); acurácia na seleção (RESENDE, 1994); quantificação do tamanho efetivo populacional e restrição à endogamia (RESENDE & BERTOLUCCI, 1994).

Para maior aprofundamento teórico no tema geral relacionado à predição de valores genéticos e seleção, recomenda-se HENDERSON

(1963, 1977; 1984) VAN VLECK et al (1987); WHITE & HODGE (1989); MINVIELLE (1990). Em relação ao tema tamanho efetivo populacional, recomenda-se CROW & KIMURA (1970) e VENCOVSKY (1978).

## 5. INSTALAÇÃO E ESPECIFICAÇÕES

## 5.1. Configuração Mínima

- Microcomputador IBM PC/XT ou Compatível
- 640 k de memória RAM
- 1 unidade de disco flexível
- 1 unidade de disco rígido com, no mínimo, 20 Mbytes de espaço disponível.
- MS-DOS Versão 3.3 ou superior

## 5.2. Configuração Recomendada

- Microcomputador IBM PC/AT 386 DX ou Compatível
- 4 Mbytes de memória RAM
- 1 unidade de disco flexível
- 1 unidade de disco rígido de, no mínimo, 50 Mbytes de espaço disponível.
- MS-DOS Versão 6.0 ou superior

## 5.3. Procedimentos para Instalação do Sistema

- Ligue o microcomputador e aguarde o c:\>
- Coloque o disquete de instalação no drive A ou B
- Digite A ou B: e tecle <ENTER>
- Digite INSTALA e tecle <ENTER>
- Aguarde o término da instalação
- Retire o disquete e guarde em local limpo e fresco
- Aparecerá o diretório C:\SELEGEN
- Digite SELEGEN para executar o programa

O procedimento de instalação do Sistema SELEGEN será efetuado somente uma vez, exceto se houver necessidade de reinstalar; caso contrário, o mesmo estará pronto para ser utilizado.

#### 5.4. Arquivo de Dados

O arquivo de dados utilizado pelo SELEGEN usa o formato DBF. Este padrão pode ser gerado por programas como: dBase, Fox, Clipper (DBU), entre outros. Algumas considerações se fazem necessárias quanto à utilização destes arquivos no Sistema SELEGEN, a saber:

- Nome dos três primeiros campos obrigatoriamente com o nome de: BLOCO, PROGÊNIE e ÁRVORE, tipo numérico com 4 posições, sem decimais.
- Os próximos campos (variáveis utilizadas) podem conter qualquer nome válido, tipo numérico com 16 posições, com 8 decimais
- Não existe limitação para quantidade de variáveis utilizadas.
- Não existe limitação para quantidade de registros utilizados.

## 6. EXECUÇÃO DO SISTEMA

Para entrar no Sistema SELEGEN, digite:

- CD SELEGEN e tecle <ENTER>
- SELEGEN <ENTER>

Com este procedimento, o sistema está pronto para execução.

Se houver necessidade de nova execução, repetir o procedimento mencionado anteriormente.

Ao entrar no Sistema SELEGEN, aparecerá uma tela de abertura com informações sobre as instituições envolvidas no desenvolvimento do software. Para prosseguir, deve-se pressionar qualquer tecla.

## 6.1. Navegação no Sistema

O programa apresenta uma série de menus e sub-menus, com várias janelas de opções.

A seleção da opção desejada no menu pode ser feita através das teclas de movimentação do cursor (seta para cima / seta para baixo). Após selecionar a opção desejada, tecle <ENTER> ou seta para baixo ou <PgUp> ou <PgDn> para exibir as novas opções disponíveis nos sub-menus. Um procedimento alternativo para movimentação do cursor e escolha da opção desejada é a digitação dos números que precedem as opções.

Estando posicionado em qualquer dos menus ou sub-menus, a utilização da tecla <ESC> retorna ao menu anterior. Assim, teclando-se <ESC> sucessivamente, volta-se aos menus iniciais até a saída do sistema.

A tecla <F5> disponibiliza uma calculadora contendo operações mátemáticas básicas, a qual pode ser utilizada em qualquer ponto ou tela do Sistema SELEGEN.

O Sistema SELEGEN, apresenta o menu inicial conforme exemplo mostrado a seguir (Figura 1).

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas Seleção Genética Computadorizada-SELEGEN \* Best Prediction (BP) \* EMBRAPA/CNPF 08/06/94 SELEGEN

- 1. Manutenção/Conversão
- 2. Entrada de Dados/Informações Biológicas
- Análises
- Resultados
- Fim dos Serviços

## **ESC - RETORNA**

## FIGURA 1- Tela Referente ao Menu Principal do Sistema SELEGEN.

A apresentação detalhada de cada opção e seus respectivos sub-menus é realizada nos tópicos seguintes.

Neste ponto é importante relatar que: o processamento da opção 3 - Análises, depende de processamento prévio da opção 2 - Entrada de Dados/Informações Biológicas; o processamento da opção 4 - Resultados, depende de processamento prévio da opção 3 - Análises. Assim, para acessar os "Resultados", deve-se, após a realização das "Análises", teclar <ESC> até o aparecimento do menu original, o qual contém a opção (Resultados) desejada.

## 6.2. Manutenção/Conversão

Escolhendo a opção 1 - MANUTENÇÃO/CONVERSÃO, aparecerá a tela descrita na Figura 2.

## MANUTENÇÃO / CONVERSÃO

- 1 Correção de Arquivos (sobrevivência)
- 2 Criação de Variáveis
- 3 Eliminação de Arquivos Gerados
- 4 Conversor de Arquivos
- 5 Configuração do Sistema
- 6 Sistema Operacional
- 7 Retorna

## **ESC - RETORNA**

## FIGURA 2 - Tela Referente à Opção Manutenção / Conversão

Neste menu, a opção 1 - Correção de Arquivos (sobrevivência) consta de um procedimento que corrige todas as variáveis em função da sobrevivência de cada parcela e também gera a variável sobrevivência.

Neste caso, um novo arquivo, a nível de médias de parcelas, é criado. Este arquivo apresentará o nome do arquivo original, porém com extensão .COR. Para utilizá-lo, deve-se renomeá-lo, empregando-se a extensão .DBF. Na entrada de dados, considerar que trata-se de uma planta por parcela (uma média) e que o arquivo possuirá uma variável a mais .

A opção 2 - Criação de Variáveis possibilita a criação das variáveis volume cilíndrico (função de altura e diâmetro ou circunferência) e peso da madeira (função de altura, diâmetro ou circunferência e densidade da madeira). Essas variáveis são criadas a nível de indivíduos. Este procedimento apenas acrescenta ao arquivo original, a variável criada. Assim, o nome original do arquivo é mantido

A opção 3 - Eliminação de Arquivos Gerados é destinada à eliminação de arquivos de resultados, gerados durante a execução do programa.

A opção 4 - Conversor de Arquivos destina-se à conversão de arquivos em formato TXT (criado em qualquer editor de texto) e formato PAGIS, para o formato DBF, o qual é utilizado pelo SELEGEN.

A opção 5 - Configuração do Sistema: Disponibiliza opções de configuração do Sistema SELEGEN como rotas, cores, tempo de mensagens.

A opção 6 - Sistema Operacional permite acesso rápido ao Sistema Operacional DOS sem sair do SELEGEN. Para retornar ao SELEGEN, digitar EXIT e pressionar a tecla <ENTER>.

A opção 7 - Retorna permite voltar ao menu original.

## 6.3. Entrada de Dados/Informações Biológicas

A opção 2 do Menu inicial conduz a duas telas, conforme as Figuras 3 e 4.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas 08/06/94 Seleção Genética Computadorizada-SELEGEN \* Best Prediction (BP) \* SELE1000 EMBRAPA/CNPF

Experimento ::

Arquivo :::

Local :::

Data de Plantio :::

Número de Blocos :::

Nr. de Progênies :::

Nr. de Plantas por Parcela ::

Zeros Significativos (S/N)..:

#### **ESC - RETORNA**

#### FIGURA 3 - Tela de Entrada de Dados

Após preenchida adequadamente a tela de Entrada de Dados, aparecerá outra tela com dados sobre Informações Biológicas.

Nesta última tela, a opção pela alternativa 1 implica em um valor zero para a taxa de autofecundação, bastando, então, fornecer o coeficiente de parentesco entre os indivíduos de uma mesma progênie.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas 88/06/94 Seleção Genética Computadorizada-SELEGEN \* Best Prediction (BP) \* SELE1000 EMBRAPA/CNPF

## INFORMAÇÕES BIOLÓGICAS

Sistema Reprodutivo

- 1. Alogamia
- 2. Misto

## **ESC - RETORNA**

## FIGURA 4. - Tela de Informações Biológicas

#### 6.4. Análises

A opção 3 do menu principal apresenta os seguintes procedimentos alternativos, conforme a Figura 5.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas 08/06/94
Seleção Genética Computadorizada - SELEGEN SELE2000
EMBRAPA/CNPF

## MENU DE ANÁLISE / CÁLCULOS

- Análise de Variância e Médias
- 2. Parâmetros Genéticos e Fenotípicos (Análise Univariada)
- 3. Seleção Univariada e Respostas Correlacionadas
- 4. Análise de Covariância e Correlação
- 5. Parâmetros Genéticos e Fenotípicos (Análise Multivariada)
- 6. Seleção Multivariada e Respostas Correlacionadas
- 7. Otimização da Seleção / Tamanho Efetivo e Endogamia
- 8. Seleção em Testes Clonais
- 9. Ordenamento de Valores Genéticos
- 10. Inspeção de Matrizes Algébricas

#### FIGURA 5 - Menu Principal de Análises

Algumas considerações sobre este último menu: a opção pelo ítem 3 automaticamente gera os resultados dos itens 1 e 2; a opção pelo item 6 automaticamente gera os resultados dos itens 1, 2, 4 e 5; a opção pelo item 7 depende de prévio processamento dos itens 3 ou 6.

Escolhendo a opção 3 - Seleção Univariada e Respostas Correlacionadas, aparece um sub-menu com vários procedimentos alternativos de seleção, conforme a Figura 6.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas 8/06/94 Seleção genética Computadorizada - SELEGEN \* Best Prediction \* SELE2300 EMBRAPA/CNPF

## 3 - SELEÇÃO UNIVARIADA E RESPOSTAS CORRELACIONADAS

- Seleção para Pomar de Sementes por Mudas
- 1. A Individual no Bloco
- B Combinada no Bloco
   C Índice Multi-Efeitos no Bloco
- Seleção para Pomar de Sementes Clonal
- 2. A Individual no Experimento2. B Combinada no Experimento
- 2. C Índice Multi-Efeitos no Experimento
- 3 Seleção de Parentais
- 4 Seleção de Progênies
- 5 Seleção de Irmãos
- 6 Seleção dentro de Progênies
- 7 Seleção para Plantio Monoprogênies e Oligoprogênies

## ESC - RETORNA

FIGURA 6 - Procedimentos Alternativos para a Seleção Univariada e Respostas Correlacionadas.

Escolhendo a opção 5 - Parâmetros Genéticos e Fenotípicos - Análise Multivariada, surgirá um sub-menu, conforme a Figura 7.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas Seleção genética Computadorizada - SELEGEN \* Best Prediction \* EMBRAPA/CNPF

08/06/94 SELE2500

## 5. PARÂMETROS GENÉTICOS E FENOTÍPICOS/ANÁLISE MULTI-VARIADA

5.1. - Objetivo da Seleção: Um Caráter

5.2. - Objetivo da Seleção: Agregado Genotípico

#### **ESC - RETORNA**

Arquivo Selecionado:

## FIGURA 7 - Sub-menu Referente a Parâmetros Genéticos e Fenotípicos - Análise Multivariada

A opção pelo ítem 6 - Seleção Multivariada e Respostas Correlacionadas, do Menu Principal de Análises, conduz a duas novas opções: 6.1 - Objetivo da Seleção: Um caráter e 6.2 - Objetivo da Seleção: Agregado genotípico. E para cada uma dessas duas opções sub-menus com procedimentos seletivos alternativos, similares aos descritos na Figura 6, aparecerão.

Escolhendo a opção 7 - Otimização da Seleção / Tamanho Efetivo e Endogamia, surgirá o seguinte sub-menu, conforme a Figura 8.

## 7 - OTIMIZAÇÃO DA SELEÇÃO / TAMANHO EFETIVO E ENDOGAMIA

- 1 Melhor Pomar Biclonal
- 2 Pomar de Sementes Clonal
- 3 População de Melhoramento
- 4 Pomar de Sementes Clonal Restrição de Nmax ind/fam
- 5 População de Melhoramento Restrição de N ind/fam
- 6 Pomar de Sementes por Mudas Restrição 1 ind/fam/bloco
- 7 Pomar de Sementes Testado
- 8 Seleção Plantio Monoprogênies/Oligoprogênies (desbaste)

## **ESC - RETORNA**

## FIGURA 8 - Sub-menu Referente à Otimização da Seleção / Tamanho Efetivo e Endogamia.

Os procedimentos alternativos descritos na figura 8 permitem ao melhorista a maximização do ganho genético com restrição à redução do tamanho efetivo e ao incremento da endogamia.

A opção pelo item 8 da figura 5 conduz ao sub-menu apresentado na Figura 9.

EMBRAPA/CNPFlorestas - Centro Nacional de Pesquisa de Florestas Seleção Genética Computadorizada - SELEGEN

10/06/94 SELE2800

## 8 - SELEÇÃO EM TESTES CLONAIS

- 1 Análise de Variância e Médias
- 2 Parâmetros Genéticos e Fenotípicos
- 3 Seleção Clonal Univariada
- 4 Seleção Clonal Multivariada

## **ESC - RETORNA**

EMBRAPA/CNPF

## FIGURA 9 - Sub-menu Referente à Seleção em Testes Clonais

Durante o uso do programa, perguntas são feitas ao usuário, do tipo: informe o nome do arquivo; informe a variável objetivo da seleção; deseja selecionar quantos indivíduos, dentre outras.

Uma visão global de todos os menus e sub-menus do programa, referente ao tópico "Análises", é apresentado no ítem 8 deste manual (Manu Clobal de Programa e Regultados Carados)

(Menu Global do Programa e Resultados Gerados).

#### 6.5. Resultados

Os menus e sub-menus referentes aos "Resultados"são idênticos àqueles apresentados para o item "Análises". Assim, a opção por qualquer alternativa conduz a um relatório de resultados, conforme aqueles apresentados nas Tabelas 1, 2 e 3. Estes relatórios estão disponíveis nas seguintes formas: impressora (tecle F10), tela (visualização direta), arquivo (tecle F2).

O relatório em tela pode ser editado e impresso de acordo com a preferência de usuário, podendo o mesmo acrescentar ou suprimir quaisquer textos ou palavras. Para utilizar adequadamente o editor

associado ao relatório, observe as seguintes instruções:

| 0 | ← ou ^S                   | Move para a esquerda                       |
|---|---------------------------|--------------------------------------------|
|   | $\rightarrow$ ou ^D       | Move para a direita                        |
|   | ↑ ou ^E                   | Move para cima                             |
| • | ↓ ou ^X                   | Move para baixo                            |
| • | HOME                      | Move para o início da linha                |
|   | END                       | Move para o fim da linha                   |
| • | PgUp                      | Move para o início da página               |
|   | PgDn                      | Move para o fim da página                  |
| 0 | ESC                       | Abandona a edição                          |
| • | ^G                        | Suprime carácter à direita do cursor       |
|   | <cr> <enter></enter></cr> | Confirma um dado ou a escolha de uma opção |

Observação: O símbolo ^ representa a tecla <CTRL>

No procedimento de gravação, será mantido o nome do arquivo de resultados, conforme explicitado em tela (RES ..... TXT).

Uma visão geral de todos os resultados gerados pelo programa é apresentada no item 8 - Menu Global do Programa e Resultados Gerados deste manual.

TABELA 1. Resultados referentes a parâmetros genéticos e fenotípicos - análise univariada.

| [DAP                                                        |          |
|-------------------------------------------------------------|----------|
|                                                             |          |
| Parâmetros Genéticos e Fenotípicos                          |          |
|                                                             |          |
|                                                             |          |
| Variância                                                   |          |
| 01 - Dentro de parcelas                                     | 5.867210 |
| 02 - Ambiental entre parcelas                               | 0.518683 |
| 03 - Entre progênies                                        | 0.272197 |
| 04 - Entre blocos                                           | 0.321215 |
| 05 - Genética aditiva                                       | 1.088788 |
| 06 - Fenotípica entre médias de progênies                   | 0.552983 |
| 07 - Fenotípica                                             | 6.979306 |
|                                                             |          |
|                                                             |          |
| Herdabilidade dos efeitos                                   |          |
| 08 - De indivíduo na parcela                                | 0.139179 |
| 09 - De progênies                                           | 0.541146 |
| 10 - De parcela                                             | 0.096329 |
| 11 - De blocos                                              | 0.013210 |
| 12 - De indivíduo no bloco                                  | 0.163529 |
| 13 - De indivíduo no experimento                            | 0.156002 |
| 14 - De indivíduo dentro de progênies                       | 0.123893 |
|                                                             | 1        |
|                                                             | 1        |
| Coeficientes de correlação intraclasse                      | 11       |
| (Sem ajuste para efeito de bloco)                           | ]        |
| 15 - Entre indiv. de uma mesma família em diferentes blocos | 0.039001 |
| 16 - Entre indiv. De uma mesma família no mesmo bloco       | 0.159342 |
| 17 - Entre indiv. De diferentes famílias no mesmo bloco     | 0.046024 |
|                                                             |          |
|                                                             |          |
| Coeficientes de correlação intraclasse                      |          |
| (Com ajuste para efeito de bloco)                           |          |
| 18 - Entre indiv de uma mesma família em diferentes blocos  | 0.040882 |
| 19 - Entre indiv. De uma mesma família no mesmo bloco       | 0.118785 |

| Acurácias associadas às unidades de seleção univariadas |          |
|---------------------------------------------------------|----------|
| (Pomar de sementes por mudas)                           |          |
| 20 - Individual no bloco                                | 0.404387 |
| 21 - Combinada no bloco                                 | 0.477349 |
| 22 - Índice multi-efeitos no bloco                      | 0.489351 |
|                                                         |          |
| Acurácias associadas às unidades de seleção univariadas |          |
| (Pomar de sementes clonal, população de melhoramento)   |          |
| 23 - Individual no experimento                          | 0.394971 |
| 24 - Combinada no experimento                           | 0.477349 |
| 25 - Índice multi-efeitos no experimento                | 0.489402 |
|                                                         |          |
| Acurácias associadas às unidades de seleção             |          |
| 26 - Efeito de indivíduo na parcela                     | 0.289204 |
| 27 - Efeito de progênies                                | 0.379767 |
|                                                         |          |
| Seleção de parentais                                    |          |
| (Pomar de sementes testado)                             | l        |
| 28 - Herdabilidade                                      | 0.984468 |
| 29 - Acurácia                                           | 0.690882 |
| Seleção de irmãos                                       |          |
| (Recombinação via sementes remanescentes)               |          |
| 30 - Herdabilidade                                      | 0.492234 |
| 31 - Acurácia                                           | 0.345441 |

## TABELA 2. Resultados da seleção univariada e respostas correlacionadas - método índice multi-efeitos no experimento.

## 3.SELEÇÃO UNIVARIADA E RESPOSTAS CORRELACIONADAS

- 3.2. Seleção para Pomar de Sementes Clonal ou População de melhoramento.
- 3.2.c Seleção índice multi-efeitos no experimento.

Variável selecionada: DAP Ganho na variável.....: DAP

Número total de Registros...... 1188

Percentual Selecionado ........... 2.53%

Número de Indivíduos Selecionados: 30

| Ordem | Bloco | Prog. | Árvore | VG      | Ganho   | Ganho    | Nova     | Ne       |
|-------|-------|-------|--------|---------|---------|----------|----------|----------|
|       |       |       |        |         | Acum.   | Acum(%)  | Média    |          |
| 1     | 5     | 11    | 6      | 1.80203 | 1.80203 | 14.13189 | 14.55354 | 1.00000  |
| 2     | 4     | 42    | 6      | 1.44719 | 1.62461 | 12.74053 | 14.37612 | 2.00000  |
| 3     | 5     | 104   | 3      | 1.35985 | 1.53636 | 12.04842 | 14.28787 | 3.00000  |
| 4     | 2     | 2     | 2      | 1.35303 | 1.49052 | 11.68900 | 14.24204 | 4.00000  |
| 5     | 2     | 104   | 5      | 1.27557 | 1.44753 | 11.35185 | 14.19904 | 4.49438  |
| 6     | 2     | 91    | 1      | 1.25747 | 1.41586 | 11.10343 | 14.16737 | 5.49618  |
| 7     | 4     | 8     | 5      | 1.24997 | 1.39216 | 10.91758 | 14.14367 | 6.49724  |
| 8     | 3     | 104   | 3      | 1.23498 | 1.37251 | 10.76351 | 14.12402 | 6.62069  |
| 9     | 6     | 104   | 2      | 1.22799 | 1.35645 | 10.63758 | 14.10796 | 6.54545  |
| 10    | 4     | 91    | 1.     | 1.21585 | 1.34239 | 10.52731 | 14.09390 | 7.21154  |
| 11    | 4     | 42    | 4      | 1.20363 | 1.32978 | 10.42838 | 14.08129 | 7.88702  |
| 12    | 4     | 104   | 5      | 1.18992 | 1.31812 | 10.33698 | 14.06963 | 7.74194  |
| 13    | 2     | 42    | 1      | 1.16131 | 1.30606 | 10.24239 | 14.05757 | 8.18732  |
| 14    | 4     | 45    | 2      | 1.12430 | 1.29308 | 10.14058 | 14.04459 | 9.08108  |
| 15    | 2     | 42    | 3      | 1.11678 | 1.28132 | 10.04840 | 14.03284 | 9.29661  |
| 16    | 3     | 42    | 4      | 1.08983 | 1.26935 | 9.95454  | 14.02087 | 9.34550  |
| 17    | 2     | 93    | 5      | 1.08230 | 1.25835 | 9.86826  | 14.00986 | 10.20590 |
| 18    | 5     | 42    | 5      | 1.08169 | 1.24854 | 9.79129  | 14.00005 | 10.10808 |
| 19    | 4     | 36    | 4      | 1.07068 | 1.23918 | 9.71788  | 13.99069 | 10.95092 |
| 20    | 2     | 104   | 6      | 1.05427 | 1.22993 | 9.64538  | 13.98144 | 10.90703 |
| 21    | 3     | 4     | 1      | 1.04233 | 1.22100 | 9.57532  | 13.97251 | 11.73479 |
| 22    | 2     | 42    | 2      | 1.02770 | 1.21221 | 9.50641  | 13.96372 | 11.57279 |
| 23    | - 1   | 1     | 5      | 1.02637 | 1.20413 | 9.44305  | 13.95564 | 12.38217 |
| 24    | 3     | 36    | 5      | 1.01700 | 1.19633 | 9.38190  | 13.94785 | 13.03436 |
| 25    | 1     | 91    | 5      | 1.00056 | 1.18850 | 9.32049  | 13.94002 | 13.52681 |
| 26    | 1     | 91    | 4      | 0.97969 | 1.18047 | 9.25751  | 13.93198 | 13.86279 |
| 27    | 1     | 93    | 3      | 0.97937 | 1.17302 | 9.19909  | 13.92454 | 14.51665 |
| 28    | 2     | 42    | 4      | 0.94002 | 1.16470 | 9.13383  | 13.91621 | 14.26280 |
| 29    | 3     | 91    | 5      | 0.93493 | 1.15678 | 9.07170  | 13.90829 | 14.48411 |
| 30    | 5     | 8     | 6      | 0.91661 | 1.14877 | 9.00892  | 13.90029 | 15.12489 |

## 3. - SELEÇÃO UNIVARIADA E RESPOSTAS CORRELACIONADAS.

3.2. - Seleção para pomar de sementes clonal ou população de melhoramento.

3.2.c - Seleção índice multi-efeitos no experimento.

Variável selecionada: DAP

Ganho na variável.....: Altura

Número total de Registros.....: 1188

Percentual Selecionado ........... 2.53%

Número de Individuos Selecionados.: 30

| Ordem | Bloco | Prog | Árvore | VG      | Ganho   | Ganho   | Nova     | Ne       |
|-------|-------|------|--------|---------|---------|---------|----------|----------|
|       |       |      |        |         | Acum.   | Acum(%) | Média    |          |
| 52    | 5     | 11   | 6      | 0.99411 | 0.99411 | 5.13376 | 20.35829 | 1.00000  |
| 1     | 4     | 42   | 6      | 1.97519 | 1.48465 | 7.66700 | 20.84883 | 2.00000  |
| 109   | 5     | 104  | 3      | 0.77742 | 1.24891 | 6.44957 | 20.61308 | 3.00000  |
| 45    | 2     | 2    | 2      | 1.02460 | 1.19283 | 6.15997 | 20.55700 | 4.00000  |
| 14    | 2     | 104  | 5      | 1.28944 | 1.21215 | 6.25975 | 20.57632 | 4.49438  |
| 30    | 2     | 91   | 1      | 1.09538 | 1.19269 | 6.15925 | 20.55686 | 5.49618  |
| 8     | 4     | 8    | 5      | 1.47326 | 1.23277 | 6.36624 | 20.59695 | 6.49724  |
| 10    | 3     | 104  | 3      | 1.42971 | 1.25739 | 6.49337 | 20.62156 | 6.62069  |
| 20    | 6     | 104  | 2      | 1.16419 | 1.24703 | 6.43989 | 20.61121 | 6.54545  |
| 81    | 4     | 91   | 1      | 0.87366 | 1.20969 | 6.24708 | 20.57387 | 7.21154  |
| 6     | 4     | 42   | 4      | 1.49671 | 1.23579 | 6.38182 | 20.59996 | 7.88702  |
| 95    | 4     | 104  | 5      | 0.81957 | 1.20110 | 6.20270 | 20.56528 | 7.74194  |
| 2     | 2     | 42   | 1      | 1.82493 | 1.24909 | 6.45051 | 20.61326 | 8.18732  |
| 56    | 4     | 45   | 2      | 0.97020 | 1.22917 | 6.34764 | 20.59334 | 9.08108  |
| 26    | 2     | 42   | 3      | 1.10721 | 1.22104 | 6.30565 | 20.58521 | 9.29661  |
| 15    | 3     | 42   | 4      | 1.28762 | 1.22520 | 6.32714 | 20.58937 | 9.34550  |
| 63    | 2     | 93   | 5      | 0.92791 | 1.20771 | 6.23683 | 20.57189 | 10.20590 |
| 23    | 5     | 42   | 5      | 1.12176 | 1.20294 | 6.21217 | 20.56711 | 10.10808 |
| 208   | 4     | 36   | 4      | 0.53602 | 1.16784 | 6.03091 | 20.53201 | 10.95092 |
| 18    | 2     | 104  | 6      | 1.16982 | 1.16793 | 6.03142 | 20.53211 | 10.90703 |
| 142   | 3     | 4    | 1      | 0.67098 | 1.14427 | 5.90921 | 20.50844 | 11.73479 |
| 12    | 2     | 42   | 2      | 1.34645 | 1.15346 | 5.95667 | 20.51763 | 11.57279 |
| 51    | 1     | 1    | 5      | 0.99700 | 1.14666 | 5.92154 | 20.51083 | 12.38217 |
| 383   | 3     | 36   | 5      | 0.25163 | 1.10936 | 5.72895 | 20.47354 | 13.03436 |
| 73    | 1     | 91   | 5      | 0.89312 | 1.10071 | 5.68428 | 20.46489 | 13.52681 |
| 72    | 1     | 91   | 4      | 0.89312 | 1.09273 | 5.64305 | 20.45690 | 13.86279 |
| 49    | 1     | 93   | 3      | 1.01043 | 1.08968 | 5.62731 | 20.45386 | 14.51665 |
| 13    | 2     | 42   | 4      | 1.34645 | 1.09885 | 5.67466 | 20.46303 | 14.26280 |
| 100   | 3     | 91   | 5      | 0.80100 | 1.08858 | 5.62162 | 20.45276 | 14.48411 |
| 29    | 5     | 8    | 6      | 1.10089 | 1.08899 | 5.62374 | 20.45317 | 15.12489 |

## TABELA 3. Resultados referentes à otimização da seleção em função do tamanho efetivo e da endogamia.

- 7. Otimização da seleção, em função do tamanho efetivo e da endogamia.
- 7.2. Pomar de sementes clonal.
- 3. Seleção univariada e respostas correlacionadas.
  - 3.2. Seleção para pomar de sementes clonal.
  - 3.2.c Seleção Índice multi-efeitos no experimento.

Variável selecionada: DAP

Ganho na variável....: DAP

## OPÇÃO 01:

- Indivíduos de diferentes progênies.

| Ordem | Bloco | Prog. | Árvor  | VG      | Ganho<br>Acum. | Ganho<br>Acum<br>(%) | Nova<br>Média | Ne       | Ganho Ac<br>Corr | Ganho Ac Corr(%) |
|-------|-------|-------|--------|---------|----------------|----------------------|---------------|----------|------------------|------------------|
| 1     | 5     | 11    | e<br>6 | 1.80203 | 1.80203        | 14.1318              | 14.55354      | 1.00000  | 0.90102          | 7.06595          |
| 2     | 4     | 42    | 6      | 1.44719 | 1.62461        | 12.7405              | 14.33534      | 2.00000  | 1.21846          | 9.55540          |
|       |       |       |        |         |                |                      |               |          |                  |                  |
| 3     | 5     | 104   | 3      | 1.35985 | 153636         | 12.0484              | 14.28787      | 3.00000  | 1.28030          | 10.0403          |
| 4     | 2     | 2     | 2      | 1.35303 | 1.49052        | 11.6890              | 14.24204      | 4.00000  | 1.30421          | 10.2278          |
| 5     | 2     | 91    | 1      | 1.25747 | 1.44391        | 11.3234              | 14.19543      | 5.00000  | 1.29952          | 10.1911          |
| 6     | 4     | 8     | 5      | 1.24997 | 1.41159        | 11.0699              | 14.16310      | 6.00000  | 1.29396          | 10.1474          |
| 7     | 4     | 45    | 2      | 1.12430 | 137055         | 10.7481              | 14.12206      | 7.00000  | 1.27265          | 9.98039          |
| 8     | 2     | 93    | 5      | 1.08230 | 133452         | 10.4655              | 14.08603      | 8.00000  | 1.25111          | 9.81146          |
| 9     | 4     | 36    | 4      | 1.07068 | 130520         | 10.2356              | 14.05671      | 9.00000  | 1.23269          | 9.66701          |
| 10    | 3     | 4     | 1      | 1.04233 | 127891         | 10.0295              | 14.03043      | 10.00000 | 1.21497          | 9.52803          |
| 11    | 1     | 1     | 5      | 1.02637 | 125596         | 9.8494               | 14.00747      | 11.00000 | 1.19887          | 9.40176          |
| 12    | 2     | 40    | 6      | 0.80535 | 121841         | 95549                | 13.96992      | 12.00000 | 1.16764          | 9.15686          |
| 13    | 5     | 41    | 1      | 0.72410 | 1.18038        | 92568                | 13.93189      | 13.00000 | 1.13498          | 8.90077          |
| 4     | 3     | 38    | 2      | 0.72409 | 1.14779        | 9.0012               | 13.89930      | 14.00000 | 1.10680          | 8.67973          |
| 15    | 2     | 43    | 2      | 0.70312 | 1.11814        | 8.7687               | 13.86966      | 15.00000 | 1.08087          | 8.47643          |

## OPÇÃO 02:

## - Ordenamento sem restrição

|       |       |       |        |         |         |          | 12121    |          |        |
|-------|-------|-------|--------|---------|---------|----------|----------|----------|--------|
|       |       | _     | ,      |         | Ganho   | Ganho    | Nova     |          | Ganho  |
| Ordem | Bloco | Prog. | Árvore | VG      | Acum.   | Acum     | Média    | Ne       | Ac     |
|       |       |       |        |         |         | (%)      |          |          | Corr   |
| 1     | 5     | 11    | 6      | 1.80203 | 1.80203 | 14.13189 | 14.55354 | 1.00000  | 0.9010 |
| 2     | 4     | 42    | 6      | 1.44719 | 1.62461 | 12.74053 | 14.37612 | 2.00000  | 1.2184 |
| 3     | 5     | 104   | 3      | 1.35985 | 1.53636 | 12.04842 | 14.28787 | 3.00000  | 1.2803 |
| 4     | 2     | 2     | 2      | 1.35303 | 1.49052 | 11.68900 | 14.24204 | 4.00000  | 1.3042 |
| 5     | 2     | 104   | 5      | 1.27557 | 1.44753 | 11.35185 | 14.19904 | 4.49438  | 1.2864 |
| 6     | 2     | 91    | 1      | 1.25747 | 1.41586 | 11.10343 | 14.16737 | 5.49618  | 1.2870 |
| 7     | 4     | 8     | 5      | 1.24997 | 1.39216 | 10.91758 | 14.14367 | 6.49724  | 1.2850 |
| 8     | 3     | 104   | 3      | 1.23498 | 1.37251 | 10.76351 | 14.12402 | 6.62069  | 1.2688 |
| 9     | 6     | 104   | 2      | 1.22799 | 1.35645 | 10.63758 | 14.10796 | 6.54545  | 1.2528 |
| 10    | 4     | 91    | 1      | 1.21585 | 1.34239 | 10.52731 | 14.09390 | 7.21154  | 1.2493 |
| 11    | 4     | 42    | 4      | 1.20363 | 1.32978 | 10.42838 | 14.08129 | 7.88702  | 1.2454 |
| 12    | 4     | 104   | 5      | 1.18992 | 1.31812 | 10.33698 | 14.06963 | 7.74194  | 1.2329 |
| 13    | 2     | 42    | 1      | 1.16131 | 1.30606 | 10.24239 | 14.05757 | 8.18732  | 1.2263 |
| 14    | 4     | 45    | 2      | 1.12430 | 1.29308 | 10.14058 | 14.04459 | 9.08108  | 1.2218 |
| 15    | 2     | 42    | 3      | 1.11678 | 1.28132 | 10.04840 | 14.03284 | 9.29661  | 1.2124 |
| 16    | 3     | 42    | 4      | 1.08983 | 1.26935 | 9.95454  | 9.95454  | 9.34550  | 1.2014 |
| 17    | 2     | 93    | 5      | 1.08230 | 1.25835 | 9.86826  | 9.86826  | 10.20590 | 1.1967 |
| 18    | 5     | 42    | 5      | 1.08169 | 1.08169 | 9.79129  | 9.79129  | 10.10808 | 1.1867 |
| 19    | 4     | 36    | 4      | 1.07068 | 1.23918 | 9.71788  | 9.71788  | 10.95092 | 1.1826 |
| 20    | 2     | 104   | 6      | 1.05427 | 1.22993 | 9.64538  | 9.64538  | 10.90703 | 1.1735 |
| 21    | 3     | 4     | 1      | 1.04233 | 1.22100 | 9.57532  | 9.57532  | 11.73479 | 1.1689 |
| 22    | 2     | 42    | 2      | 1.02770 | 1.21221 | 9.50641  | 9.50641  | 11.57279 | 1.1598 |
| 23    | 1     | 1     | 5      | 1.02637 | 1.20413 | 9.44305  | 9.44305  | 12.38217 | 1.1555 |
| 24    | 3     | 36    | 5      | 1.01700 | 1.19633 | 9.38190  | 9.38190  | 13.03436 | 1.1504 |
| 25    | 1     | 91    | 5      | 1.00056 | 1.18850 | 9.32049  | 9.32049  | 13.52681 | 1.1445 |
| 26    | 1     | 91    | 4      | 0.97969 | 1.18047 | 9.25751  | 9.25751  | 13.86279 | 1.1379 |
| 27    | 1     | 93    | 3      | 0.97937 | 1.17302 | 9.19909  | 9.19909  | 14.51665 | 1.1326 |
| 28    | 2     | 42    | 4      | 0.94002 | 1.16970 | 9.13383  | 9.13383  | 14.26280 | 1.1238 |
| 29    | 3     | 91    | 5      | 0.93493 | 1.15678 | 9.07170  | 9.07170  | 14.48411 | 1.1168 |
| 30    | 5     | 8     | 6      | 0.91661 | 1.14877 | 9.00892  | 9.00892  | 15.12489 | 1.1108 |

## SELEÇÃO ÓTIMA

| Ordem | Bloco | Prog. | Árvore | VG      | Ganho<br>Acum. | Ganho<br>Acum(%) | Nova<br>Média | Ne      | Ganho<br>Ac Corr | Ganho<br>Ac Corr<br>(%) |
|-------|-------|-------|--------|---------|----------------|------------------|---------------|---------|------------------|-------------------------|
| 1     | 5     | 11    | 6      | 1.80203 | 1.80203        | 14.13189         | 14.55354      | 1.00000 | 0.90102          | 7.06595                 |
| 2     | 4     | 42    | 6      | 1.44719 | 1.62461        | 12.74053         | 14.37612      | 2.00000 | 1.21846          | 9.55540                 |
| 3     | 5     | 104   | 3      | 1.35985 | 1.53636        | 12.04842         | 14.28787      | 3.00000 | 1.28030          | 10.04035                |
| 4     | 2     | 2     | 2      | 1.35303 | 1.49052        | 11.68900         | 14.24204      | 4.00000 | 1.30421          | 10.22787                |

#### 7. SAÍDA DO SISTEMA

Para sair do programa, deve-se retornar ao menu inicial (Figura 1) e teclar <ESC> ou utilizar a opção 5 do referido menu.

#### 8. MENU GLOBAL DO PROGRAMA E RESULTADOS GERADOS

## PROCEDIMENTOS BIOMÉTRICOS

#### 1 - Análise de variâncias e médias

#### Fornece:

- Identificação do experimento
- Análise de variância para todas as variáveis
- Média geral
- Coeficiente de variação experimental
- Probabilidade de erro associado à significância (Teste F)
- Médias de progênies
- Médias de blocos

## 2 - Parâmetros genéticos e fenotípicos - análise univariada

Fornece para cada variável:

- Componentes da variação fenotípica
- Coeficientes de herdabilidade
- Coeficientes de correlação intraclasse
- Acurácias por diferentes métodos de seleção univariada

#### 3 - Seleção univariada e respostas correlacionadas

- 3.1. Seleção para pomar de sementes por mudas
  - a Individual no bloco
  - b Combinada no bloco
  - c Índice multi-efeitos no bloco
- Seleção para pomar de sementes clonal ou população de melhoramento
  - a Individual no experimento
  - b Combinada no experimento
  - c Índice multi-efeitos no experimento
- 3.3. Seleção de parentais
- 3.4. Seleção de progênies
- 3.5. Seleção de irmãos
- 3.6. Seleção dentro de progênies
- 3.7. Seleção para Plantio Monoprogênies e Oligoprogênies (sem desbaste)
- 3.8. Seleção entre e dentro de progênies no experimento (PSC)
- 3.9. Seleção entre e dentro de progênies no bloco (PSM)

Fornece para cada procedimento de seleção univariada:

- Valor genético para cada indivíduo do experimento, para a variável objetivo da seleção
- Valor genético para cada indivíduo, para as demais variáveis analisadas
- Ganho genético na variável objetivo da seleção
- Ganho genético correlacionado nas demais variáveis analisadas

- Tamanho efetivo populacional
- Nova média do material genético após a seleção, para todas as variáveis
- Ordem do "ranking" por seleção direta, para variáveis selecionadas indiretamente

## 4 - Análise de covariância e correlação

Fornece para cada efeito do modelo matemático:

- Matrizes de produtos médios
- Matrizes de covariância genética
- Matrizes de covariância fenotípica
- Matrizes de correlação genética
- Matrizes de correlação fenotípica

#### 5 - Parâmetros genéticos e fenotípicos - análise multivariada

#### Fornece:

- 5.1. Objetivo da seleção: um caráter
  - Coeficientes de predição genética associados aos vários efeitos
  - Acurácias por diferentes métodos de seleção
- 5.2. Objetivo da seleção: agregado genotípico
  - Acurácias por diferentes métodos de seleção

## 6 - Seleção multivariada e respostas correlacionadas

- 6.1.- Objetivo da seleção: (um caráter)
- 6.1.1. Seleção para pomar de sementes por mudas
  - a Individual no bloco
  - b Combinada no bloco
  - c Índice multi-efeitos no bloco
- 6.1.2. Seleção para pomar de sementes clonal ou população de melhoramento
  - a Individual no experimento
  - b Combinada no experimento
  - c Índice multi-efeitos no experimento

- 6.1.3. Seleção de parentais
- 6.1.4. Seleção de progênies
- 6.1.5. Seleção de irmãos
- 6.1.6. Seleção dentro de progênies
- 6.1.7. Seleção para Plantio Monoprogênies e Oligoprogênies (sem desbaste)
- 6.1.8. Seleção entre e dentro de progênies no experimento (PSC)
- 6.1.9 Seleção entre e dentro de progênies no bloco (PSM)

Fornece para cada procedimento de seleção multivariada, objetivando ganho em um só caráter:

- Valor genético para cada indivíduo do experimento, para a variável objetivo da seleção
- Valor genético para cada indivíduo, para as demais variáveis analisadas
- Ganho genético na variável objetivo da seleção
- Ganho genético correlacionado nas demais variáveis analisadas
- Tamanho efetivo populacional
- Nova média do material genético após a seleção, para todas as variáveis
- Ordem do "ranking" por seleção direta, para variáveis selecionadas indiretamente
- 6.2. Objetivo da seleção: (agregado genotípico)
- 6.2.1. Seleção para pomar de sementes por mudas
  - a Individual no bloco
  - b Combinada no bloco
  - c Índice multi-efeitos no bloco
- 6.2.2. Seleção para pomar de sementes clonal ou população de melhoramento
  - a Individual no experimento
  - b Combinada no experimento
  - c Índice multi-efeitos no experimento
- 6.2.3. Seleção de parentais
- 6.2.4. Seleção de progênies

- 6.2.5. Seleção de imãos
- 6.2.6. Seleção dentro de progênies
- 6.2.7. Seleção para plantio monoprogênies e oligoprogênies (sem desbaste)
- 6.2.8. Seleção entre e dentro de progênies no experimento (PSC)
- 6.2.9. Seleção entre e dentro de progênies no bloco (PSM)

Fornece para cada procedimento de seleção multivariada, objetivando ganho no agregado genotípico:

- Valor genético para cada indivíduo do experimento, para o agregado genotípico
- Valor genético para cada indivíduo, para as variáveis individualmente
- Ganho genético no agregado genotípico
- Ganho genético correlacionado em cada variável
- Tamanho efetivo populacional
- Nova média do material genético após a seleção, para todas as variáveis e para o índice de seleção
- Ordem do "ranking" por seleção direta, para variáveis selecionadas indiretamente

## 7 - Otimização da seleção em função do tamanho efetivo e da endogamia

- 7.1. Melhor pomar biclonal
- 7.2. Pomar de sementes clonal
- 7.3. População de melhoramento
- 7.4. Pomar de sementes clonal Restrição de Nmáx ind/fam
- 7.5. População de melhoramento Restrição de Nmáx ind/fam
- 7.6. Pomar de sementes por mudas (restrição de 1 ind/fam/bloco)
- 7.7. Pomar de sementes testado
- 7.8. Seleção para plantio monoprogênies e oligoprogênies (com desbaste)
- 8 Seleção em testes clonais
- 8.1. Análise de variância e médias
- 8.2. Parâmetros genéticos e fenotípicos

- 8.3. Seleção clonal univariada
- 8.4. Seleção clonal multivariada
- 8.4.1. Objetivo da seleção: um caráter
- 8.4.2. Objetivo da seleção: agregado genotípico

## 9 - Ordenamento de valores genéticos

#### Fornece:

- Seleção envolvendo vários experimentos em um mesmo local
- Seleção envolvendo diferentes procedências

## 10 - Inspeção de matrizes algébricas

#### Fornece:

- Autovalores
- Autovetores
- 11 Seleção de Cruzamentos/ Predição da Descendência
- 12 Delineamentos de Cruzamento/ Planejamento da População Experimental
- 13 Intervalo de Confiança/ Desvio Padrão de Ganhos Genéticos

#### **AGRADECIMENTOS**

Os autores agradecem aos estagiários Arion Bastos, da Área de Informação e Claudia Costa, do Comitê de Publicações, pelo apoio na estruturação deste manual.

## 9. REFERÊNCIAS BIBLIOGRÁFICAS

- BUENO FILHO, J.S.S. Seleção combinada versus seleção sequencial no melhoramento de populações florestais. Piracicaba:ESALQ, 1992. 96p. Tese Mestrado.
- CROW, J.F.; KIMURA, M. *An introduction to population genetics theory.* New York: Harper and Row, 1970. 591p.
- HENDERSON, C.R. Selection index and expected genetic advance. In: HANSON, W.D.; ROBISON, H.F. Statistical genetics and

- plant breeding. Washington: NAS-NRC, 1963. p.141-163. (NAS-NCR.Pub.982).
- HENDERSON, C.R. Prediction of future records. In: POLLACK, E; KEMPTHORNE, O.; BAILEY, I. *Proceedings International Conference on Quantitative Genetics*. Ames: Iowa State University Press, 1977. p.615-638.
- HENDERSON, C.R. *Applications of linear models in animal breeding*. Ontario: University of Guelph, 1984. 462p.
- KAGEYAMA, P.Y.; VENCOVSKY, R. Variação genética em progênies de uma população de <u>Eucalyptus grandis</u> Hill Maiden. *IPEF*, Piracicaba v.24, p.9-26, 1983.
- MINVIELLE, F. Principes d'amélioration genétique des animaux domestiques . Quebec: Les Presses de L' Universite Laval, 1990. 21p.
- RESENDE, M.D.V. de; OLIVEIRA, E.B.; HIGA, A.R. Utilização de indices de seleção no melhoramento do <u>Eucalyptus</u>. *Boletim de Pesquisa Florestal*, Colombo, n.21, p. 1-13, 1990.
- RESENDE, M.D.V. de. Correções nas expressões do progresso genético com seleção em função da amostragem finita dentro de famílias e populações e implicações no melhoramento florestal. *Boletim de Pesquisa Florestal*, Colombo, n.22/23, p.61-77, 1991.
- RESENDE, M.D.V. de; HIGA, A.R. Estimação de valores genéticos no melhoramento de <u>Eucalyptus</u> seleção em um caráter com base em informações do indivíduo e seus parentes. *Boletim de Pesquisa Florestal*, Colombo, 1992 (no prelo).
- RESENDE, M.D.V. de; HIGA, A.R. Maximização da eficiência da seleção em testes de progênies de <u>Eucalyptus</u> através da utilização de todos os efeitos do modelo matemático. *Boletim de Pesquisa Florestal*, Colombo, 1993 (no prelo).
- RESENDE, M.D.V. de; HIGA, A.R.; LAVORANTI, O.J. Regressão geno-fenotípica multivariada e maximização do progresso genético em programas de melhoramento de <u>Eucalyptus</u>. *Boletim de Pesquisa Florestal*, Colombo, 1993a (no prelo).
- RESENDE, M.D.V. de; HIGA, A.R.; LAVORANTI, O.J. Predição de valores genéticos no melhoramento de <u>Eucalyptus</u> Melhor Predição Linear. In: CONGRESSO FLORESTAL BRASILEIRO, 7.,1993, Curitiba. *Anais*. São Paulo: Sociedade Brasileira de Silvicultura, 1993b. p.144-147.
- RESENDE, M.D.V. de; BERTOLUCCI, F.L.G. Maximization of genetic gain with restriction on effective population size and inbreeding in *Eucalyptus grandis*. In: IUFRO CONFERENCE "Eucalypt

- Plantations: Improving Fibre Yield and Quality", 1994, Hobart (no prelo).
- RESENDE, M.D.V. de; MEDRADO, M.J.S. Aspectos metodológicos no melhoramento genético de *Leucaena leucocephala*, uma espécie florestal autógama. In: CONGRESSO BRASILEIRO SOBRE SISTEMAS AGROFLORESTAIS, 1.,1994, Porto Velho. *Anais*. Colombo: EMBRAPA CNPF, 1994. v.2, p.233-248. (EMBRAPA CNPF. Documentos, 27).
- RESENDE, M.D.V. de. Seleção precoce no melhoramento florestal. In: WORKSHOP SIF/UFV: Métodos de Seleção, 1994, Belo Horizonte (no prelo).
- RESENDE, M.D.V. de; VENCOVSKY, R.; FERNANDES, J.S.C. Selection and genetic gains in populations of *Eucalyptus* with mixed mating system. In: IUFRO CONFERENCE "Eucalypt Plantations: Improving Fibre Yield and Qualit, 1994, Hobart (no prelo).
- VAN VLECK, L.D.; POLLACK, E.J.; BRANFORD, E.A. Genetics for the animal sciences. New York: W.H. Freeman, 1987. 391p.
- VENCOVSKY, R. Effective size of monoecious populations submitted to artificial selection. *Revista Brasileira de Genética*, Ribeirão Preto, v.1, n.3, p. 181-191, 1978.
- WHITE, T.L.; HODGE, G.R. Predicting breeding values with applications in forest tree improvement. London: Kluwer, 1989. 367p.

# SELEGEN Seleção Genética Computadorizada

Genética Estatística: Marcos Deon Vilela de Resende

Edilson Batista de Oliveira

Informática: Luiz Candido Melinski

Fernando Silvera Goulart Junior

Gerson Rino Prantl Oaida

Maiores Informações:

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA CENTRO NACIONAL DE PESQUISA DE FLORESTAS - CNPFlorestas

Estrada da Ribeira km 111

Caixa Postal: 319 - CEP 83.411-000 - Colombo - PR

Telefone: (041) 359-1313 Telex: (41) 30120 Fax: (041) 359-2276