PRODUÇÃO E RELAÇÃO RÁQUIS/CACHO DA BANANEIRA 'NANICÃO' EM DIFERENTES DENSIDADES E ARRANJOS DE PLANTIO¹

RICARDO ALFREDO KLUGE², JOÃO ALEXIO SCARPARE FILHO², RICARDO VICTÓRIA FILHO² e ANGELO PEDRO JACOMINO²

RESUMO - Objetivou-se avaliar a influência de diferentes densidades e arranjos de plantio sobre os componentes de produção e a relação ráquis/cacho de bananeiras 'Nanicão', estabelecidas em Piracicaba, SP. Foram estudadas quatro densidades: 1.333, 1.666, 2.222 e 3.333 plantas ha¹, e dois arranjos de plantio: retângulo e triângulo (quincôncio). Independentemente do arranjo utilizado, o aumento da densidade elevou a produção de frutos de 37,24 para 75,83 t ha¹ e reduziu a massa do cacho de 30,30 para 24,79 kg, por causa da redução na massa do fruto. A porcentagem da massa da ráquis em relação à massa do cacho permaneceu em torno de 8%, independentemente da densidade e arranjo. Na maior densidade (3.333 plantas ha¹) podem ser exportadas do bananal até 6,80 t ha¹ de ráquis, material que pode ser aproveitado como matéria-prima para a fabricação de papel.

Termos para indexação: *Musa*, população de plantas, distribuição da população, espaçamento, rendimento, inflorescências.

YIELD AND BUNCH STEM/BUNCH RATIO OF 'NANICÃO' BANANAS AT DIFFERENT DENSITIES AND ARRANGEMENTS

ABSTRACT - This research was carried out with the objective to evaluate the effects of different densities and plant arrangement on components of yield and bunch stem/bunch ratio of 'Nanicão' banana established in Piracicaba, SP. Four densities (1,333, 1,666, 2,222 and 3,333 plants ha¹) and two arrangements (rectangle and triangle) were studied. Independent of arrangement the increase of density raised fruit yield of 37.24 to 75.83 t ha¹. However bunch mass was reduced of 30.30 to 24.79 kg due to reduced fruit mass. The bunch stem/bunch ratio was 8% independent of density and arrangement. At density of 3,333 plants ha¹ can be exported 6.80 t ha¹ of bunch stem of plantation and these component of yield can be used as raw material to manufacture paper.

Index terms: Musa, plant population, stand establishment, spacing, yield, inflorescences.

INTRODUÇÃO

Dados referentes ao ano de 1998 apontam que o Brasil é o terceiro maior produtor de bananas, com total aproximado de 5,5 milhões de toneladas ano⁻¹, depois da Índia e Equador, que produzem 10,2 e 7,5 milhões de toneladas ano⁻¹, respectivamente (FAO, 1999).

O adensamento de plantio tem sido visto como uma estratégia para aumentar a produtividade, pois conduz, normalmente, a um melhor aproveitamento do solo, mão-de-obra e insumos e a elevadas producões por área.

A densidade ótima de plantio na cultura da banana é derivada de uma integração complexa de muitos fatores, tais como: cultivar, fertilidade do solo, tipo de muda, seleção de seguidores (rebentos), nível de tecnologia aplicada, controle de plantas daninhas, velocidade do vento, topografia, aspectos econômicos, entre outros (Simmonds, 1982; Robinson & Nel, 1988; Soto Ballestero et al., 1992). Quando as diferenças climáticas são adicionadas a esses fatores, torna-se óbvio que as respostas das plantas às dife-

¹ Aceito para publicação em 20 de dezembro de 1999.

² Eng. Agrôn., Dr., Dep. de Produção Vegetal, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Caixa Postal 9, CEP 13418-900 Piracicaba, SP. Bolsista do CNPq. E-mail: rakluge@carpa.ciagri.usp.br, jascarpa@carpa.ciagri.usp.br, rvictori@carpa.ciagri.usp.br, jacomino@carpa.ciagri.usp.br

rentes densidades de plantio podem diferir substancialmente de uma região a outra. Tem sido verificado que a densidade de plantas interfere na massa de cacho e na produtividade dos bananais. De maneira geral, o aumento na densidade diminui a massa do cacho, em virtude da redução no número de pencas e frutos (Mattos et al., 1970; Santos, 1977; Gomes et al., 1984; Robinson & Nel, 1989). Contudo, o adensamento eleva a produtividade, principalmente nos primeiros ciclos (Daniells et al., 1985; Lichtemberg et al., 1996).

A distribuição ou arranjo das plantas na área de plantio também constitui um fator de influência sobre a produtividade, pois os diferentes sistemas de espaçamento alteram a eficiência na captação de luz pelas folhas das plantas bem como afetam a exploração do solo (Pereira, 1989; Robinson et al., 1989). Os arranjos de plantio mais comumente usados são o quadrado e o retângulo, que geralmente apresentam baixa eficiência no aproveitamento do terreno e da luz (Soto Ballestero et al., 1992), enquanto outros arranjos, como o triângulo, são pouco estudados em bananicultura.

A cultura da banana produz uma quantidade grande de resíduos orgânicos, que incluem o pseudocaule, folhas, engaço (pedúnculo) e ráquis. Moreira (1987) estimou que um bananal conduzido de maneira convencional pode fornecer até 200 t ha⁻¹ ano⁻¹ de restos de cultura. Os restos vegetais, deixados após a colheita, permanecem no bananal como forma de disponibilizar matéria orgânica às plantas que estão em desenvolvimento (Gallo et al.,1972; Purseglove, 1972). Normalmente, o pseudocaule é mantido o mais comprido possível, até 45-50 dias após o corte do cacho, para favorecer o desenvolvimento dos rebentos (Moreira, 1987), enquanto as folhas velhas, ao cobrir o solo, podem auxiliar no controle de plantas daninhas. Adicionalmente, essas folhas são incorporadas ao solo, fornecendo nutrientes.

Com a adoção de tecnologia de colheita mais apropriada, existe no Brasil a tendência de substituir o encaixotamento de bananas no campo pelo transporte dos cachos inteiros até o galpão de embalagem, para posterior tratamento e embalagem. Isso fará com que a ráquis e o engaço sejam retirados do bananal, tornando-se pouco aproveitados caso não

haja retorno dos materiais à plantação. As partes do cacho, entretanto, podem ser aproveitadas como matéria-prima na obtenção de fibra para a produção de papel. Segundo Torres (1981), a fibra da ráquis apresenta 11,73% de lignina e 53,5% de alfa-celulose, suplantando, em celulose, a fibra do bagaço de cana-de-açúcar (*Saccharum* spp.). Sua maior resistência e flexibilidade, de acordo com o autor, faz desse material uma fonte apropriada para a produção de papel. Blanco Rojas (1996), trabalhando com beneficiamento e polpação da ráquis da bananeira 'Nanicão', verificou que, no Estado de São Paulo, cerca de 2.000 t ano⁻¹ de pasta celulósica poderiam ser obtidas a partir desse material.

Os dados referentes à massa da ráquis e seu porcentual em relação à massa do cacho são escassos. Isso faz com que a produtividade estimada de um bananal seja calculada, invariavelmente, com base na massa total do cacho. Daniells et al. (1985) determinaram que a ráquis da bananeira 'Williams' (*Musa* AAA subgrupo Cavendish) representa aproximadamente 9% da massa total do cacho. Blanco Rojas (1996) observou em Registro, Vale do Ribeira, SP, que a massa da ráquis da bananeira 'Nanicão' variou de 1,28 a 2,88 kg, com média de 1,8 kg.

A interferência da densidade de bananais sobre a massa da ráquis e seu porcentual em relação à massa do cacho não tem sido estudada.

O objetivo deste trabalho foi verificar o efeito de diferentes densidades de bananeiras, estabelecidas em dois arranjos de plantio, sobre os componentes exportáveis de produção e sobre o porcentual da massa da ráquis em relação à massa do cacho.

MATERIAL E MÉTODOS

O experimento foi conduzido na área experimental de banana do Departamento de Produção Vegetal da Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP.

O clima de Piracicaba, conforme a classificação de Köppen, é do tipo Cwa: tropical de altitude, com três meses mais secos (junho/julho/agosto), chuvas de verão e seca no inverno. A temperatura média do mês mais quente é maior que 22°C, e do mês mais frio não é inferior a 16°C, com média de 21,1°C; precipitação média de 1.253 mm ano⁻¹; ventos predominantes 1ª este e 2ª sudoeste, com velocidade média de 2,2 m s⁻¹; umidade relativa do ar de 74% e

insolação média mensal de 201,5 horas. A altitude de Piracicaba é de 546 m.

O solo da área experimental foi classificado como Terra Roxa Estruturada eutrófica A moderado textura argilosa sobre muita argilosa, correspondendo ao Kandudalfic Eutrudox (Vidal-Torrado & Sparovek, 1993).

Foi acompanhado o terceiro ciclo de bananeiras cultivar Nanicão (*Musa* AAA subgrupo Cavendish) plantadas em 24 de janeiro de 1994. Foram utilizadas mudas do tipo "chifrão" (brotação lateral, com folhas lanceoladas e emitindo folhas normais, com peso médio de 2,5 kg) e o bananal foi conduzido com três plantas por touceira (planta matriz, primeiro rebento e segundo rebento). A colheita do referido ciclo ocorreu entre os meses de março e junho de 1997.

Durante o ciclo da cultura foram realizadas as práticas de controle de plantas daninhas, capinas, desbaste de rebentos, retirada de folhas velhas, adubações, retirada do coração e controle de pragas e doenças, conforme recomendações de Moreira (1987). O coração foi eliminado 10 dias após a abertura da última penca, deixando-se a ráquis masculina com aproximadamente 12 cm. A última penca foi mantida no cacho.

Os tratamentos consistiram do uso de diferentes densidades e arranjos de plantio. Os arranjos utilizados foram retângulo e triângulo (quincôncio). Cada arranjo de plantas apresentou quatro densidades: 1.333, 1.666, 2.222 e 3.333 plantas ha⁻¹, representando um total de oito tratamentos. No arranjo em retângulo, as dimensões utilizadas foram 3,0 x 2,5 m, 3,0 x 2,0 m, 3,0 x 1,5 m e 3,0 x 1,0 m. Para o arranjo em triângulo, as dimensões (base x altura) foram: 2,8 x 1,4 m, 2,6 x 1,3 m; 2,4 x 1,2 m e 2,0 x 1,0 m. Em cada vértice do retângulo e do triângulo foi colocada uma planta.

O delineamento experimental adotado foi o de blocos casualizados em esquema fatorial 4 x 2 (quatro densidades e dois arranjos), com três repetições. Cada parcela, incluindo a bordadura, foi constituída de 30 a 45 plantas, sendo consideradas 10 plantas úteis, o que totalizou 240 plantas avaliadas. Os dados coletados foram submetidos à análise de variância (teste F) e, em caso de significância, as médias foram comparadas pelo teste de Tukey a 5% de probabilidade.

As seguintes variáveis foram avaliadas: a) massa do cacho (kg): cada cacho foi pesado logo após a colheita; b) massa da ráquis (kg): considerou-se como ráquis o conjunto entre o engaço (porção do cacho que inicia no ponto de fixação da última folha e termina na inserção da primeira penca) e a ráquis propriamente dita (eixo onde se inserem as inflorescências, iniciando no ponto de inserção da primeira penca e terminando na inflorescência masculina ou

coração); c) massa de pencas por cacho (kg): calculada subtraindo-se a massa da ráquis da massa do cacho; d) porcentagem da massa da ráquis (MR) em relação à massa do cacho (MC) (% MR/MC); e) número de frutos por cacho; f) massa média do fruto (g): obtida pela divisão da massa de pencas por cacho pelo número de frutos presentes em cada cacho; g) número de pencas por cacho; h) produção estimada de cachos (t ha-1): calculada multiplicando-se a massa do cacho pelo número de plantas por hectare; i) produção estimada de frutos (t ha-1): calculada multiplicando-se a massa de pencas pelo número de plantas por hectare; j) produção estimada de ráquis (t ha-1): calculada mediante a multiplicação da massa da ráquis pelo número de plantas por hectare.

RESULTADOS E DISCUSSÃO

A análise da variância mostrou que não houve efeito do arranjo de plantio em nenhuma das variáveis, o mesmo ocorrendo na interação entre densidade e arranjo. Isso indica que há pouca influência da disposição das plantas sobre os componentes de produção da cultivar em questão, e que o efeito das densidades, aos níveis estudados, independe do arranjo das plantas no terreno, ao menos no terceiro ciclo.

O aumento da densidade de plantas tendeu a diminuir a massa do cacho (Tabela 1). A maior densidade (3.333 plantas ha-1) reduziu em 15 a 20% a massa do cacho em comparação às demais densidades. Esses resultados concordam com os encontrados por outros pesquisadores (Mattos et al., 1970; Santos, 1977; Gomes et al., 1984; Robinson & Nel, 1989). A diminuição na massa do cacho provocada pelo aumento da densidade deve-se, provavelmente, à maior competição interplantas por água e nutrientes, e pior aproveitamento da luminosidade, que ocorrem sob altas populações de plantas (Janick, 1968; Robinson et al., 1989).

Embora não tenha havido diferença significativa, a massa da ráquis tendeu a ser menor com o aumento da densidade (Tabela 2), acompanhando a redução da massa do cacho. Assim, na maior densidade a massa da ráquis foi aproximadamente 15% menor do que nas demais densidades. A média geral da massa da ráquis observada no experimento foi de 2,30 kg, superior à média de 1,88 kg observada por Blanco Rojas (1996), no município de Registro.

A porcentagem média MR/MC observada no presente trabalho (8,08%) foi inferior à obtida por Daniells et al. (1985) na Austrália, cujo valor médio foi de 9%. É provável que outros fatores, além da densidade, como cultivar, clima e solo, estejam envolvidos nessa relação. Embora o teste F da análise da variância não tenha acusado efeito dos tratamentos, houve uma tendência de a porcentagem da relação MR/MC diminuir à medida que a densidade foi reduzida, passando de 8,20%, em média, na densidade 3.333 plantas ha⁻¹, para 7,78% na densidade 1.333 plantas ha⁻¹ (Tabela 1). Isso indica que, com a redução na compe-

TABELA 1. Massa do cacho, ráquis e pencas, e relação entre massa da ráquis e massa do cacho (MR/MC) da bananeira 'Nanicão' em diferentes densidades e arranjos. Piracicaba, SP, 1997¹.

	Tracicada, S	1,177/.			
Densidade	Arranjo		Média		
(plantas ha ⁻¹)	Retângulo	Triângulo			
Massa do cacho (kg)					
1.333	29,81	30,78	30,30a		
1.666	30,72	28,95	29,83a		
2.222	28,73	29,47	29,10a		
3.333	23,42	26,16	24,79b		
Média	28,17A	28,84A			
	Massa da ráquis (kg)				
1.333	2,47	2,24	2,36a		
1.666	2,44	2,38	2,41a		
2.222	2,44	2,37	2,40a		
3.333	1,87	2,20	2,04a		
Média	2,31A	2,30A			
Massa de pencas por cacho (kg)					
1.333	27,34	28,54	27,94a		
1.666	28,28	26,57	27,42a		
2.222	26,29	27,1	26,29a		
3.333	21,55	23,96	22,75b		
Média	25,87A	26,54A			
-	MR/MC (%)				
1.333	8,28	7,28	7,78a		
1.666	7,94	8,22	8,08a		
2.222	8,50	8,04	8,27a		
3.333	7,99	8,40	8,20a		
Média	8,17A	7,99A			

¹ Em cada variável, médias seguidas de mesma letra, minúscula na coluna e maiúscula na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

tição interplanta provocada pelo aumento do espaçamento, a ráquis tende a ter menor proporção em relação ao cacho, como conseqüência da tendência de produção de frutos maiores. Esse fato pode ser comprovado pelos resultados obtidos em relação à massa de pencas por cacho e massa média do fruto, que aumentaram com a diminuição da densidade, embora o número de frutos e pencas por cacho não tenham apresentado diferenças significativas em função da densidade (Tabelas 1e 2).

A massa de pencas por cacho observada nas menores densidades (1.333 e 1.666 plantas ha⁻¹) foi significativamente superior às verificadas na maior densidade (3.333 plantas ha⁻¹), conforme Tabela 1. O mesmo comportamento foi observado quanto à massa média do fruto (Tabela 2). Esses resultados também explicam a maior massa do cacho observada nas menores densidades. A diminuição da massa do

TABELA 2. Número de frutos, massa do fruto e número de pencas da bananeira 'Nanicão' em diferentes densidades e arranjos. Piracicaba, SP, 1997¹.

Densidade (plantas ha¹)	Arranjo		Média	
	Retângulo	Triângulo		
	Frutos/cacho			
1.333	168	172	170a	
1.666	174	164	169a	
2.222	165	181	173a	
3.333	156	154	155a	
Média	166A	168A		
	Massa do fruto (g)			
1.333	162,73	165,90	164,70a	
1.666	162,52	162,01	163,10a	
2.222	159,33	149,72	154,53ab	
3.333	138,14	155,58	146,86b	
Média	155,68A	158,30A		
	Pencas/cacho			
1.333	9,0	9,0	9,0a	
1.666	9,0	8,5	8,7a	
2.222	8,5	9,0	8,7a	
3.333	8,5	8,7	8,6a	
Média	8,8A	8,8A		

¹ Em cada variável, médias seguidas de mesma letra, minúscula na coluna e maiúscula na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

fruto no plantio mais denso pode ser uma conseqüência do alto grau de sombreamento do bananal, o que diminui a capacidade fotossintética da planta e reduz o enchimento e desenvolvimento do fruto (Robinson & Nel, 1988; Israeli et al., 1995).

Embora tenha diminuído a massa do cacho e do fruto, o aumento da densidade de 1.333 para 3.333 plantas ha⁻¹ praticamente duplicou a produção de cachos em toneladas por hectare (Tabela 3), o que era esperado em virtude do maior número de plantas presentes.

A determinação da massa da ráquis permitiu estimar a produção por hectare desse material, de acordo com as densidades utilizadas (Tabela 3). A produção de ráquis aumentou com o incremento da densidade, tendo variado de 3,14 t ha⁻¹, com 1.333 plantas ha⁻¹, a 6,80 t ha⁻¹, com 3.333 plantas ha⁻¹.

TABELA 3. Produção estimada de cachos, frutos e ráquis da bananeira 'Nanicão' em diferentes densidades e arranjos. Piracicaba, SP, 1997 ¹.

Densidade	Arranjo		Média		
(plantas ha ⁻¹)	Retângulo	Triângulo			
	Produção de cachos (t ha ⁻¹)				
1.333	39,75	41,04	40,39c		
1.666	50,84	48,23	49,53bc		
2.222	63,84	65,48	64,66ab		
3.333	78,08	87,18	82,63a		
Média	58,13A	60,48A			
	Produção de frutos (t ha 1)				
1.333	36,44	38,04	37,24c		
1.666	47,11	44,26	45,68bc		
2.222	58,40	60,21	59,30ab		
3.333	71,88	80,79	75,83a		
Média	53,56A	55,60A			
	Produção de ráquis (t ha-1)				
1.333	3,29	3,00	3,14c		
1.666	4,06	3,96	4,01bc		
2.222	5,42	5,26	5,34ab		
3.333	6,24	7,34	6,80a		
Média	4,75A	4.66A			

¹ Em cada variável, médias seguidas de mesma letra, minúscula na coluna e maiúscula na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

Com base na determinação da massa da ráquis estimou-se também a produção de frutos por hectare (Tabela 3). As diferenças estatísticas observadas em relação à produção estimada de cachos não foram alteradas, porém os valores absolutos foram proporcionalmente reduzidos, em função da porcentagem MR/MC.

Pelos resultados obtidos neste trabalho verificouse que a avaliação da massa da ráquis permite estimar o volume que pode ser produzido por hectare, desse material, em diferentes densidades. Além disso, pode-se estimar a produtividade de um bananal mais corretamente ao descontar-se a porcentagem de MR/MC. A duração do ciclo da bananeira, por sua vez, também deve ser levado em consideração na estimativa da produtividade de um bananal, cujo resultado é expresso em t ha-lano-l (Robinson & Nel, 1989).

A ráquis é um subproduto do cacho da bananeira que pode servir de matéria-prima para a fabricação de papel (Torres, 1981; Blanco Rojas, 1996). O seu aproveitamento torna-se mais importante em sistemas de produção em que as operações de despencamento, tratamento e embalagem são realizados em galpões, e não diretamente no campo. Quando a embalagem é realizada no bananal, a ráquis pode ser mantida sobre o terreno ou incorporada ao solo, como forma de repor parte dos nutrientes exportados na colheita (Vitti & Ruggiero, 1984). Quando o cacho é transportado para o galpão de embalagem, a ráquis é pouco aproveitada após o despencamento. Nesse caso, poderia ser utilizada na fabricação de papel ou na alimentação animal.

Observa-se ainda que o adensamento de bananais promove maior volume de produção, por área, de cachos, ráquis e frutos, pela maior população de plantas. Entretanto, o maior número de plantas na área apresenta inconvenientes, como redução na massa do cacho e do fruto por planta, diminuindo a qualidade final do produto para mercado *in natura*. Isso torna o uso de altas densidades impraticável, quando se almeja o mercado externo. Por sua vez, o aumento da densidade de plantas pode ter aplicação prática na produção de matéria-prima para a indústria, na qual o tamanho do fruto não é tão importante, e na produção de ráquis, que poderia ser usada na fabricação de papel.

CONCLUSÕES

- 1. A produção de ráquis de bananeiras 'Nanicão', submetidas a densidades de 1.333 a 3.333 plantas ha⁻¹, varia de 3,14 a 6,80 t ha⁻¹.
- A porcentagem entre a massa da ráquis e a massa do cacho é de 8%, independentemente da densidade e do arranjo de plantas.
- 3. O aumento na densidade de bananeiras 'Nanicão', de 1.333 para 3.333 plantas ha⁻¹, promove redução da massa do cacho e do fruto.
- 4. Há pouca interferência do arranjo (retângulo ou triângulo) sobre a produção da bananeira 'Nanicão' no terceiro ciclo.

REFERÊNCIAS

- BLANCO ROJAS, M.L. Beneficiamento e polpação da ráquis da bananeira 'Nanicão' (*Musa* grupo AAA "Giant Cavendish"). Piracicaba : ESALQ, 1996. 150p. Dissertação de Mestrado.
- DANIELLS, J.W.; O'FARREL, P.J.; CAMPBELL, S.J. The response of bananas to plant spacing in double rows in North Queensland. **Queensland Journal of Agricultural and Animal Sciences**, Brisbane, v.42, n.1, p.45-51, 1985.
- FAO (Rome, Itália). **Statistical databases**. Disponível: FAO site (1999). URL: http://www.fao.org Consultado em 10 maio 1999.
- GALLO, J.R.; BATAGLIA, O.C.; FURLANI, P.R.; HIROCE, R.; FURLANI, A.M.C.; RAMOS, M.T.B.; MOREIRA, R.S. Composição química inorgânica da bananeira (*Musa acuminata* cultivar Nanicão). **Ciência e Cultura**, São Paulo, v.24, n.1, p.70-79, 1972.
- GOMES, J.A.; NÓBREGA, A.C.; ANDERSEN, O. Densidade de plantio da bananeira cultivar Prata (grupo AAB), na região produtora do Estado do Espírito Santo. In: CONGRESSO BRASILEIRO DE FRUTICULTURA, 7., Florianópolis, 1984. Anais. Florianópolis: Sociedade Brasileira de Fruticultura/EMPASC, 1984. v.1, p.237-249.
- ISRAELI, Y.; PLAUT, Z.; SCHWARTZ, A. Effect of shade on banana morphology, growth and production. **Scientia Horticulturae**, Amsterdam, v.62, n.1/2, p.45-56, 1995.
- JANICK, J. A ciência da horticultura. Rio de Janeiro : Freitas Bastos, 1968. 485p.
- LICHTEMBERG, L.A.; MALBURG, J.L.; HINZ, R.H. Effect of density on yield and cycle duration of Nanicão banana in Southern Brazil. **Interamerican**

- **Society for Tropical Horticulture Proceedings**, Homestead, n.40, p.232-235, 1996.
- MATTOS, J.R.; SIMÃO, S.; CAMPOS, H. Influência do espaçamento do peso dos cachos da bananeira. **Solo**, Piracicaba, v.62, n.2, p.51-60, 1970.
- MOREIRA, R.S. **Banana:** teoria e prática de cultivo. Campinas: Fundação Cargill, 1987.335p.
- PEREIRA, A.R. Competição intra-específica entre plantas cultivadas. **Agronômico**, Campinas, v.41, n.1, p.5-11, 1989.
- PURSEGLOVE, J.W. **Tropical crops**: monocotyledons. New York: J. Willey, 1972. v.2, p.343-384.
- ROBINSON, J.C.; NEL, D.J. Plant density studies with banana (cv. Williams) in a subtropical climate. I. Vegetative morphology, phenology and plantation microclimate. **Journal of Horticultural Science**, Ashford, v.63, n.2, p.303-313, 1988.
- ROBINSON, J.C.; NEL, D.J. Plant density studies with banana (cv. Williams) in a subtropical climate. II. Components of yield and seasonal distribution of yield. **Journal of Horticultural Science**, Ashford, v.64, n.2, p.211-222, 1989.
- ROBINSON, J.C.; NEL, D.J.; BOWER, J.P. Plant density studies with banana (cv. Williams) in a subtropical climate. III. The influence of spatial arrangement. **Journal of Horticultural Science**, Ashford, v.64, n.4, p.513-519, 1989.
- SANTOS, P.J. Estudo do comportamento da bananeira (*Musa acuminata*, Colla), cv. nanica em diferentes espaçamentos. Viçosa: UFV, 1977. 26p. Dissertação de Mestrado.
- SIMMONDS, N.W. **Bananas**. 2.ed. London: Longmans, 1982. 512 p. (Tropical Agriculture Series).
- SOTO BALLESTERO, M.S.; SOTO, E.; SOLÍS, P.; LÓPEZ, A. Siembra y operaciones de cultivo. In: SOTO BALLESTERO, M.S. **Bananos**: cultivo y comercialización. San José: Litografic e Imprenta, 1992. p.211-265.
- TORRES, M. **Propriedades fundamentales de la fibra del raquis del banano (***Musa cavendishii***)**. San José : Universidad de Costa Rica,1981. 31p.
- VIDAL-TORRADO, P.; SPAROVEK, G. Mapa pedológico detalhado do Campus Luiz de Queiroz, Universidade de São Paulo. Piracicaba : ESALQ-Departamento de Ciência do Solo, 1993. Escala 1:10.000.
- VITTI, G.C.; RUGGIERO, C. Aproveitamento do engaço, coração e ráquis, como fonte de nutrientes. In: SIMPÓSIO BRASILEIRO SOBRE BANANICULTURA, 1., Jaboticabal, 1984. **Anais**. Jaboticabal: UNESP/FUNEP, 1984. p.392-399.