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ABSTRACT - Backpropagation neural networks are implemented for prediction of the level of Para-
guay River at Ladário city, MS. Using 274 monthly mean values, the trained network predicts the
levels of the four next months with relative errors smaller than 17%. For some special points, the
prediction results also show that the neural network method seems to be useful to predict time series
related to phenomena influenced by complex climatic and geophysical processes, and it does not deal
directly with causal relationships involved in the phenomena studied. A discussion about the variabil-
ity of the estimation errors for different predicted data is carried out here.

Index terms: climate, geophysics.

PREVISÃO DOS NÍVEIS DO RIO PARAGUAI USANDO REDES NEURAIS

RESUMO - Redes neurais com retropropagação são usadas para fornecer a previsão do nível do rio
Paraguai em Ladário, MS. Usando 274 valores médios mensais, a rede neural treinada prevê o nível
dos quatro meses seguintes com erros relativos menores do que 17%. Para alguns pontos especiais, os
resultados da previsão também mostram que o método da rede neural parece ser útil para prever séries
temporais relacionadas a fenômenos influenciados por processos climáticos e geofísicos complexos.
Isto sem que se trate diretamente das relações causais envolvidas nos fenômenos estudados. Também
é efetuada uma discussão sobre a variabilidade dos erros de estimação para diferentes valores previstos.

Termos para indexação: clima, geofísica.
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INTRODUCTION

Prediction of nonlinear time series is an interesting
recent application of neural networks. There are a
number of prediction methods available for this kind
of problem, such as Polynomials, Rational
polynomials, Neural Networks and Radial basis
functions (Casdagli, 1989; Kim & Stringer, 1992).
Neural networks were found to be useful and
competitive with the best recent nonlinear approxi-
mation methods (Lapedes & Farber, 1987; Gallant

& White, 1992; Gershenfeld & Weigend, 1993;
Li et al., 1996; Marzban & Stumpf, 1996).

In this paper, a Backpropagation Neural Network
(BPNN), one of the most important developments
in neurocomputing (Rumelhart & McClelland, 1986;
Hecht-Nielsen, 1990), is implemented for the
prediction of the level of Paraguay River, at Ladário
city, MS. This river, with a length of 2,550 km, rises
in the Mato Grosso region of Brazil and runs
Southward between highlands at the West and the
Brazilian plateau at the East. Its basin, with an area
of approximately 150,000 km2, consists of a series
of huge alluvial plains drained by a complex network
of rivers interspersed with marshes, in a region called
Pantanal. In this region, many areas suffer a
succession of droughts and severe floods with their
obvious economic and social consequences.

The levels of Paraguay River are influenced by
several different factors from micro to macro scales.
Therefore, predicting the level of the Paraguay River
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with convenient antecedence (and so estimating the
area to be flooded) is a relevant scientific, social and
economic goal. Neural networks can treat all these
factors simultaneously, which was an incentive to
apply this method to complex time series such as
those of river levels. The daily data of the series
studied in this work were collected from January
1900 to June 1995 (the monthly mean data of the
level of Paraguay River is shown in Fig. 1).

In the following sections, firstly, the basic concept
of neural networks and its application for prediction
are shown. Secondly, the neural networks to predict
the next four months data of Paraguay River levels
are applied. Finally, a brief discussion of the results
and the conclusions are given.

MATERIAL AND METHODS

For a long time, the linear models were the general
theoretical framework for time series analysis and
prediction. However, there are many cases for which linear
models are inadequate for accurate predictions as in the

FIG. 1. The monthly mean data of the level of Paraguay River.

case of forecasting the levels of the Paraguay River,
particularly when the data has a broadband power spectrum
that cannot be well modelled by a linear approximation
(Gershenfeld & Weigend, 1993). In such situations, more
complex nonlinear function representations need to be
applied to the data, like those of machine learning, typified
by neural networks, that can adaptively explore a large
space of potential models. In this way, a Backpropagation
Neural Network (BPNN) is implemented in the Stuttgart
Neural Network Simulator (SNNS) developed at the
Institute for Parallel and Distributed High Performance
Systems (IPVR) at the University of Stuttgart (Zell et al.,
1995).

A neural network is an interconnected network of
simple processing elements. Communication between
processing elements occurs along paths of variable
connection weights. By changing the values of these
connection strengths (weights) the network can
collectively produce complex overall behavior (Welstead,
1994). The network has three layers: an input layer, an
output layer, and a layer in the middle, not connected
directly to the input or output, called the hidden layer.
The output layer has a single output x(t), the input values
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of the time series x(t–1), x(t–2),...x(t–d) are received
through d input units, which simply pass the input forwards
to the hidden units uj, j = 1,2,...,q. Each connection
performs a linear transformation determined by the
connection strength (weight) wij, so the total input for
hidden unit uj is Σ     wij  x(t-i). Each unit performs a
nonlinear transformation on its total input, producing the
output:

The activation function Ψ is the same for all units, but
each unit may have its own bias w0j, representing an
external input or the neuron’s intrinsic activity level. Here,
Ψ is a sigmoid function with limiting value 0 and 1 as
uj → – ∞  and uj  → + ∞, respectively:

The hidden layer outputs uj are passed along to the
single output unit with connection strength vj, which
performs an affine transformation on its total input. Then,
the network’s output x(t) can be represented as:

for d inputs and q units in the hidden layer.

Training a Neural Network involves the minimization
of the mean-square error (MSE) of the outputs of the
network:

where the w is the weight set of wij  of the network, N is
the number of cases in the training set, and     (t) and
xk(t,w) are the actual and the predicted values of a single
output.

One way to make predictions at various next steps t,
t–1, t–2,...(t–i∆t) is to place previously predicted values
at the input lines to bootstrap to higher i values (Lapedes
& Farber, 1987). After training a network to predict at t,
the predicted values can be fed back to the inputs to predict
at t+1, t+2,... etc. In this way, unacceptable prediction
results should not occur until k is quite large. The training
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procedure was performed on a workstation SUN-SPARC
10, running at 51 Mhz frequency and 6 Gb disk capacity.

RESULTS AND DISCUSSION

Firstly, a subset of 274 data to predict the river
levels from March to June 1995 was used. Then,
135, 571 and 1,142 monthly mean values were used
separately to predict the river levels from March to
June 1995 too, in order to show the change in the
prediction errors. After that, some special points were
predict to show the ability of the neural network.
Finally, a discussion of the results is made.

Using the 274 monthly mean values (from May
1972 to February 1995), the trained network
predicted the next four months. For this size of data,
the training usually takes from 30 to 60 minutes,
depending on the structure of the neural network (for
example, one hidden layer networks with 12 inputs,
48 hidden units and a single output) and the learning
rate (in this study, a 0.2 value is used). The monthly
mean values were separated into three sets: training
set of 260 data, training test set of 14 data and test
set or validation set of 4 data. The training set is
used to train the network and the training test set is
used to evaluate performance of the network. The
test set (four monthly mean values), in Table 1 is
used to compare the values predicted by the network
in order to measure the predictive ability of the
network. As shown in Table 1, the relative errors of
the predictions of the next four months are less than
17%. As Papoulis (1990) mentions, for nonlinear
prediction the mean-square error is a reasonable
criterion to evaluate the actual capability of the
network to predict the data. For most neural
networks, the mean-square error is well defined. The
advantage of mean-squared error is that it uniformly
weights each training trial error in accordance with
the square of magnitude of the error vector
[ $x k(t) – xk(t,w)] in equation (4). In this case, after
2,000 circles of training, the Root Mean Square
(RMS) error of the network is calculated as 0.0013.
Fig. 2 shows the reconstruction (from May 1972 to
February 1995) and predictions (from March 1995
to June 1995) of the monthly mean levels of the
River.
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FIG. 2. Reconstruction (from January 1981 to
February 1995) and prediction (March to June
1995) of the monthly level of Paraguay River.

FIG. 3. Reconstruction (May 1971 to September 1972)
and prediction (October 1972 to April 1973) of
the monthly level of Paraguay River. This Fi-
gure shows the capability of the Neural
Network for reconstruction and prediction of
the tendency of the variation of data.

TABLE 1. Prediction of the monthly level of the
Paraguay River from March to June 1995.

1 Mean of the first eight daily observations of June.

For further evaluation of the precision of the
predictions of neural network, other subsets of data
are used to train the networks to predict some special
points: these are from January to April 1948, October
1930 to January 1931, May to August 1959 and
October 1972 to January 1973, which display strong
deviation from the average behaviour. Table 2 shows
the results of the predictions. To predict the data
January to April 1948, 564 data are used to train the
network. Then, the network predicted the levels of
January, February and March 1948 with relative
errors of 30% (or less). To predict the data from
October 1930 to January 1931, 344 data are used to
train the network and the relative errors of the next
four months prediction are less than 8%. To predict
the data from May to August 1959, a subset of data
is used to train the network with sizes 700. The
corresponding relative errors are less than 11%. As
Fig. 1 shows, the variability of the data from 1970
to 1975 is very strong. The monthly data from
January 1900 to September 1971 is used to train the

network in order to reconstruct and predict the sharp
changes in data from October, 1971 to April, 1972.
Fig. 3 shows the reconstruction (from January, 1971
to September, 1971) and the prediction (from
October, 1971 to April, 1972). The prediction results
show that the neural network detects adequately only
the tendency of the monthly mean data during this
period. But the relative errors of predictions from
October, 1972 to January, 1973 are between 33%
and 70% (Table 2).

In some other situations, data records are not
complete, or the amount of available data is not
enough. So, a question may be proposed: how many
data are necessary for prediction using this Neural
Network? This is an open problem in the neural
network field. To study it the networks were used to
test a group of data with 135, 274, 571 and 1,142 of
our data. In order to have the same condition, all of
these sets were used to train the networks for 2,000
circles. The trained networks were applied to predict
the data from March to June, 1995. Table 3 shows
the results. One can see that the subset of  274 data
gives the best prediction results.

The results show that the ability of the neural
network to predict depends on the period chosen for
prediction. After realizing this, it is important to make
remarks about some characteristics of the variability
of the level of a river like Paraguay River to find
possible physical explanations for the results found.

Mar. Apr. May June

Observations 542.90 649.87 622.16 588.001

Prediction 506 540 541 510

Relative errors 7% 17% 13% 13%
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TABLE 2. Prediction of some special points.

1 MSE in this specific Table is calculated with data to the interval [0.15, 0.85].

Data used for training
neural network

MSE1 of trained
network

Relative error of monthly prediction (%)

564 (01/1900-12/1947) 0.00090 24 (Jan./1947)    3 (Feb.)   28 (Mar.)          60 (April)

344 (01/1900-09/1930) 0.00124   5 (Oct./1930)    7 (Nov.)    8 (Dec.)            4 (Jan./1931)

700 (01/1900-04/1959) 0.00101   8 (May/1959) 10 (June)    11 (July)            8 (Aug./1959)

861 (01/1900-09/1972) 0.00079 33 (Oct./1972) - (Nov.)      47 (Dec./1972) 70 (Jan./1973)

TABLE 3. Comparison of the prediction from different training data set.

1 MSE in this specific Table is calculated with data to the interval [0.15, 0.85].

Data used for training MSE1 of trained Relative error of  monthly prediction  (%)

neural network network March April May June

135 (04/1983 - 02/1995) 0.00157 16 22 16 14

274 (05/1972 - 02/1995) 0.00130 7 17 13 13

571(05/1972 - 02/1995 0.00109 17 24 18 16

1142 (01/1900 - 02/1995) 0.00096 16 22 13 11

In the first place, it is necessary to ask why the
river can be predictable, that is, why the data series
of the river would have persistence. Why would this
data series contain a memory that would permit
prediction of the future based on information
contained in the past? That introduces the problem
of what causes the variation in the level of the river.
To answer this question one must take into account
that there must be a correspondence between the
precipitation that falls on the drainage basin of a river
and its flow. Although this relationship is probably
nonlinear, it is reasonable to expect that strong
anomalies in the precipitation are related to
anomalies of the same tendency in the behaviour of
a river (Marengo, 1995). Therefore, the flow of the
river, and so its height, constitutes one of the most
robust integrators of the long-term hydrologic
properties of its drainage basin (Richey et al., 1989).

In this way, the effects of persistence or of
memory found in the river level should, at least
partly, be due to characteristics of persistence of
anomalies existing in the factors, which determine

the constitution of the hydrologic cycle. Some of
such factors are determined by the general
atmospheric circulation in their diverse scales
(Trenberth, 1985) and their anomalies.

However, some external factors to the ocean-
atmosphere system can also eventually influence the
variability in the hydrologic cycle. Their action on
the hydrologic cycle can occur before one could
detect it from the information contained in the
memory of the time series. This appears to be the
case of the modifications introduced by the volcanic
eruptions, whose influence on the radiation budget
over large hemispheric areas seems to be appreciable
(Robock & Mao, 1995).

It is noteworthy that the period between 1960 and
1970, for which the predictions made by the neural
network were not satisfactory, corresponded to the
highest values of most of the indexes of global
volcanism in the South Hemisphere elaborated by
Robock & Free (1995).

The hypothesis is therefore formulate that the
decrease in the level of Paraguay River in this period
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is related to a period of reduction in the flux of solar
energy incident to the surface with its consequences
on the energy budget and on the hydrological cycle.
This decrease was probably caused by the existence
of a great number of volcanic aerosols in the
atmosphere of the South Hemisphere. These aerosols
could introduce alterations in the hydrologic cycle
of the Pantanal region in this period.

In such a situation the neural network would not
be able to make good prediction because the time-
series of the levels of Paraguay River does not
contain past information that makes it possible to
predict modifications introduced by volcanoes.
These physical factors are external to the ocean-
atmosphere system. When the variations on the river
level are introduced by the factors internal to the
ocean-atmosphere system, they have considerable
persistence. Then, the predictions of the neural
networks are acceptable. That happens, for example,
in the prediction of May to August 1959 and March
to June 1995.

CONCLUSIONS

1. The trained networks predict the levels of the
Paraguay River at Ladário, MS, for the four next
months with relative errors smaller than 17%.

2. The ability of  prediction of the neural network
varies accordingly to the prediction period chosen.
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